CLeaRrsyvy o

Safety Solutions Designer

B+

How to Model System Properties
In a Software Formal Model

« Presentation of a more integrated use of the B method
lgéegryecﬁcomte without changing the language and the tool.»
|

THIERRY.LECOMTE@CLEARSY.COM Art mostly generated

Attribution 4.0 Unported (CC BY 4.0)
with ChatGPT or similar

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Common Thread

How the last 30 years
changed our view
on safety critical
software development
In the railways

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model Q @ | P. 2/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

SAFETY

o Failing systems
o Safety critical
o Standards

o Safety in practice

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 3/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Methods

Failing Software-Based Systems

Reverse Engineering

Redundant Process
Wrong Natural language L
specification requirement
Wron T
e o Specification
environment
specification program l Bad
. hardware
Design RE
\ 4
Wrong Source code
exploitation Failing TEST
procedurs Wrong W hardware
execution Binary code (uC, 1/0)

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 4/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety @ Railways

|
|

NL safety demonstration
Convince responsible human expert
Formal methods highly recommended

SIL3:107/h cATASTROPHIC
SIL4 : 10-9/h FAILURES J

STRONG STANDARDS

Vs = EN5012{6, 8, 9}

Specification
Design
Implementation
Environment
Exploitation

Execution machine
Entropic hardware)

- J

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model Q @ | P. 5/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety @ Railways

.

Specification
Design
Implementation
Environment
Exploitation

APPLIED TO

NL safety demonstration
Convince responsible human expert

Formal methods jhighly recommended

-/

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 6/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety @ Railways @ CLEARSY

~

Specification
Design
Implementation
Environment
Exploitation

r FORMAL SOFTWARE DEVELOPMENT
- FORMAL DATA VALIDATION

F FORMAL SAFETY PROOF

APPLIED TO

NL safety demonstration
Convince responsible human expert

Formal methods jhighly recommended

.

-/

SAFETY
|_ COMPUTER

2 =)

Execution machine
Entropic hardware ;

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 7/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Methods to Handle Failing Systems

- B
| Event-B for C&C l

fOF safety I non_threaded Specification

l Bad

reasoning safety software esign nardware
F—v A

B | CLEARSY SAFETY g™
e, | PLATFORM

validation
CLe a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 8/76

Attribution 4.0 Unported (CC BY 4.0)

Natural language
requirement

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

B for C&C
not Threaded Safety Software

Failing systems
Safety critical
Standards
Implementation

<no_code>
<no_problem>

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 9/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Software Development

Safety critical software No unit test
formally specified & proved Most integration test avoided

@ SET THEORY
Fd FIRST ORDER LOGIC IDE DEVELOPED DURING 25+ YEARS
f4 INTEGER FREELY AVAILABLE
g BOOLEAN CERTIFIED EN50128 T2 IN 2024

ol GRAPHS

https://www.atelierb.eu/en/

References:
* The B-book - Assigning Programs to Meanings, Cambridge Press, 2001
* The First Twenty-Five Years of Industrial Use of the B-Method, FMICS, 2020

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 10/76
@ [(E Attribution 4.0 Unported (CC BY 4.0)

CLeaRsVy

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://www.atelierb.eu/en/

« Only inactive sequences can be added to the
active sequences execution queue. »

v

activation sequence = /* Activation d'une séguence non active */
PRE - (seguences = sequences_actives) THEN
ANY sequ WHERE

Natural language
requirement

B Specification

B Implementation

sequ € seguences - seguences_actives
THEN
seguences_actives := seguences _actives U {segu}
END
END;
activation sequence = /* Activation d'une séguence non active */
VAR segqu IN
sequ <-- indexSequencelInactive;
activeSeguence (sequ)
END ;
wold MO activation sgeguence (vold) l

{
CTX_SEQUENCES =zequ;

sequence manager indexSequencelnactive (&sequ);
seguence manager activeSequence (gedqu);

v

0x01F370 | FFFF EB4C 2440 BSCS5 BDTD OCEB 4110 B3CE
0x01F3E0 | 83Ce OCED 1485 0000 0000 BD4Z2 0EE3 FEO7T
0x01F3590 | 7817 F7CT 0400 0000 T740F EB41 0CED 7D10
0x01F3SA0 | 83Ce 04ES 450C ED42 04FC B83C1 ClES 0ZF3

C generated code

Behaviour
+

properties

Behaviour
+

properties

Binary code

OD ‘ P. 11/76

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

« Only inactive sequences can be added to the Natural language
active sequences execution queue. » requirement

activation sequence = /* Activation d'une séguence non active */
PRE - (seguences = sequences_actives) THEN

ANY sequ 'ié'HERE . Proof (coherence)
sequ seguences — segquences_actives 11 1
HEN B Specification

seguences_actives := seguences _actives U {segu}
END

Cyclic software

single-thread Proof (refinement)

activation sequence = /* Activation d'une séguence non active */

VAR segqu IN .
sequ <-- indexSequencelInactive; B Implementa‘“on
activeSeguence (sequ)

END ;

Proof (coherence)

wold MO activation sgeguence (vold)

CTX SEQUENCES sequ:

C generated code

sequence manager indexSequencelnactive (&sequ);
seguence manager activeSequence (gedqu);

0x01F370 | FFFF EB4C 2440 BSCS5 BDTD OCEB 4110 B3CE
0x01F3E0 | 83Ce OCED 1485 0000 0000 BD4Z2 0EE3 FEO7T .
0x01F3590 | 7817 F7CT 0400 0000 T740F EB41 0CED 7D10 Blnary COde ° @ | P. 12/76
0x01F3SA0 | 83Ce 04ES 450C ED42 04FC B83C1 ClES 0ZF3

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Proof Obligations from B Models

Dynamic aspect

should establish

Static aspect

Proof obligations

are referenced b

static properties

should preserve

are consistent

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 13/76
@ @ Attribution 4.0 Unported (CC BY 4.0)

CLeaRsVy

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

B Code Generation

11 int32_t Mo__xx;

= The software code is generated from the model [R
Code is readable, very close to the model and is easily ~—
checked
M0.mch MO _i.imp
1 IMPLEMENTATION MO i
= REFINES MO
3 21| void Me@__inc(void)
4-' | CONCRETE VARIABLES 22| {
5 XX (MO__xx == 2147483647)
- INVARIANT 24
7 Xx: INT 25 M@_ xx = @;
8- |INITIALISATION
9 XX = 0
10
11_ OPE AT TORIS
12 inc = IF xx = MAXINT THEN xx:=0 ELSE xxX := XX +1 END
13 END
C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Software Formal Development

» Atelier B Technology [c, C++, Prolog-like]

> Automatic refinement based on Siemens
Inference engine

» * Integrated into Atelier B

L » Applications up to 500 kloc for train control (NY metro,

CdG shuttle) and software engineering (interpreter,

compiler)

> Code generators:

» Ada (proprietary)(product specific)
« C (generic, 32-bit MCU)(generation of Frama-C ACSL)

2023 ° Rust

 RIP: Instruction List, Ladder, LLVM, VHDL

References:

* Applying a Formal Method in Industry: A 15-Year Trajectory, FMICS, 2009
* On B and Event-B: Principles, Success and Challenges, ABZ, 2018

e B2rust, https://github.com/CLEARSY/b2rust

RULE scalar ini0
REFINES
@a :: @b
WHEN
ENUM (Gb) &
@c : @b
IMPLEMENTATION
@a := @c
END;|

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model

Attribution 4.0 Unported (CC BY 4.0)

OD ‘ P. 15/76

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://github.com/CLEARSY/b2rust

Software Formal Development

» Atelier B Technology [c, C++, Prolog-like] m P

\ e Obligations
> Specific proof tools developed [
ETEEE - Main prover as an inference engine with using 2600 rules whs)
« Predicate prover to demonstrate 80% of the rules "‘;‘;g;‘:::" Set Theory
* Main prover stuck in 1998 (interactive demos could not
survive prover improvement) @
_ Extension of interactive proof language, GUI ot
on of interactive proof languag e)
Connexion with third party provers (Alt-Ergo, CVC3, Eﬁﬁ:ﬂg [o] [A"'Erg"J

Zenon Madulo)

iProver, Vampire, Z3, Zenon)
« 500k proof obligations publicly available for benchmark
« Connexion with Generative Al for proof script generation

References:
* ANR Projects Bware, BLASST, ICSPA - ECSEL Project AIDOaRT The BWare Platform for the
» Atelier B oPEn ResOurces, https://github.com/CLEARSY/apero Automated Verification of B Proof Obligations

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ | P. 16/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://github.com/CLEARSY/apero

Software Formal Development

» Atelier B Dissemination

> Continuous low frequency professional training
> Internal training for volunteers and FM profiles
> Continuous academic courses with CLEARSY Safety Platform

> Downloads:
* 4500 / teaching semester,
» 1300 Atelier B Prover plug-in for Rodin platform

References:
* Programming Handbook, https://github.com/CLEARSY/CSSP-Programming-Handbook

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P.17/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Video duration: 02:55

Level: Basic

duration: 08:43 Level: Basic

omponents,

Level: Basic Video duration: 09:29

Lecture 2: Overview of the B
method

Lecture 4 : introduction to
Abstract Machines

Level: Basic Video duration: 16:31

Me@®©E

massive open
online course

https://mooc.imd.ufrn.br/

i
METROPOLE
DIGITAL

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Software Formal Development

Paris L14 Automatic Train Protection (ATP)
Emergency braking in case of danger (86 kloc B, 110 kloc Ada)

2000-2024

Used by ~30% radio-based control metro worldwide
CDGVAL shuttle (500 kloc / automatic refinement)

2006-2024

Used for Paris L1, L4, L13, L14 (Olympics)

2024-2030

To be used for Paris L15, L16, L17, L18

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model 0 @ | P. 19/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

B: what for ?

» Driving is not safety related
> No need of formal methods to drive a train

» Safeguard
> Localization (graphs)
> Kinetic energy control (integer) . =
> Emergency braking (Boolean equations) MT' t.:mr'_
. v
Braking curves I
QD | roome

FM/FMICS | How to Model System Properties in a Software Formal Model

CLeaRsVy

@ @ Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Methods and Railways: metrics

Top | i | tati The specification is not
op level Impiementation fully contained

— Imports 55 components in the toplevel component

— Specify top level one-cycle function:

root - « Compute location, manage kinetic energy, control PSD, trigger
emergency braking, etc.

Metrics
— 233 machines, 50 kloc
— 46 refinements, 6 kloc
— 213 implementations, 45 kloc
— 3 000 definitions
— 23000 proof obligations (83 % automatic proof)

Modern Automatic Train Protection — 3000 added user rules (85 % automatic proof)
Software (2015)

The specification is not
« avoid collision »
but

FM/EMICS | How to Model System Properties in a Software « prake if not authorized to go forward »
Attribution 4.0 Unported (CC BY 4.0)

CLEdR

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Towards the limits

« There is overEnergy iff I can find a track section starting at X2M, complying with the dynamic
chaining of blocks, on which I can

either find a restriction belonging to a block such as the energy on that restriction, computed by
summing deltas of energy of all restrictions located between X2MRes and this restriction, is

greater than the energy associated to this restriction,

or find 2 restrictions belonging to the EOA block, one being before the track section under
consideration, the other after the track section, such as the energy associated to the EOA by

1 i1 17 44 ‘ 3 -
using these restrictions is positive. » | LE O/@// @ | i B
: ?:Tj ! ® R Lnto“ ‘\\Q 15A '
OV._/ ‘1 & VL104/2 g Lo @ j'rg: | [u:.A':
[Extract from Automatic Train Protection specification] }f/ L Bl B _— i . B
L |OoF e — YA NEITY | sty
: T 1@3‘ = \>—- el f
— | 9487 | Ty
— + 21, A NeTED I3 e T4 A | E— WIsT
i | Jj s — - RN :
cLear FM/FMICS | How to Model System Pr¢ g i [®ws - Tk
8 | 7:;4 [f) I | 2 N
7| : i: [=2] 3!
] H Y‘

Attribution 4.0 Unported (CC BY 4.0 i
i *

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Towards the limits

p_over := bool (# (over_track). ((over_track : seq (t_block * t_direction) & over_track /= {} & first (over_track) = p_X2MBlock |> p_X2MDir & ii. (ii:1..size (over_track
)-1=>(over_track) (ii):dom (sidb_nextBlock))& lii. (ii:1..size (over_track) => sidb_nextBlock ((over_track) (ii)) = (over_track) (ii+1)))&(# (over_res).((
over_res : sidb_restrictionApplicable & (#ii. (ii : dom (over_ track) & ((prj2 (t_block, t_direction) (over_track (ii)))=c_up =>over_res : ran (sgd_blockUpRestrictionSeq
((prjl (t_block, t_direction) (over_track (ii)))))) & ((prj2 (t_block, t_direction) (over_track (ii)))=c_down =>over_res : ran(sgd_ blockDownRestrictionSeq ((prid(
t_block, t dlrect|on) (over_track (ii)))))) & (ii=1=>not (over_res <= p_X2MRes)) & p_X2MSSWorst + p_X2MDSS + (SIGMA(jj) . (jj: 1 ..ii | SIGMA (pre_res). (
pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj)))=c_up => pre_res : ran (sgd_blockUpRestrictionSeq ((prjl (t_| bIock t_direction) (over_track (jj))
)))) & ((prj2 (t_block, t_direction) (over_track (jj))) = c_down => pre_res : ran (sgd_blockDownRestrictionSeq ((prjl (t_block , t_direction) (over_track (jj)))))) & (jj
=1 =>not (pre_res <= p_X2MRes)) & (jj = ii => not (pre_res >= over_res)) | sgd_restrictionDeltaSqSpeed (pre_res)))) > sgd_restrlctlonSquareSpeed (over_res) & (
over_res : sgd_restrictionFront => p_X2MResDist + ((SIGMA (ti).(ti: 1..ii | sgd_blockLength ((prjl (t_block, t_direction)((over_track) (ti)))))) ({ c_down

| >sgd_blockLength (p_X2MBlock) sgd_restrictionAbs (p_X2MRes), c_up |>sgd_restrictionAbs (p_X2MRes) } (p_X2MDir)) ({ c_down |>sgd_restrictionAbs (over_res),
c_up |>sgd_blockLength ((prjl (t_block, t_direction) ((over_track) (ii)))) sgd_restrictionAbs (over_res) } ((prj2 (t_block ,t_direction) ((over_track) (ii)))))) +
sgd_restrictionLength (over_res) > loc_locationUncertainty + c_trainLength))))) or (# (eoa_res, res_after_eoa , ii) . (eoa_res : t_restriction & res_after_eoa : t_restriction
& ii : dom (over_track) & p_EOABIlock = (prj1 (t_block, t_direction)(over_track (ii))) & (ii=1=>p_X2MRes <= eoa_res) & ((prj2 (t_block, t_direction) (over_track (i)
)) = c_up =>eoa_res : ran (sgd_blockUpRestrictionSeq (p_EOABIock)) & res_after_eoa : ran (sgd_blockUpRestrictionSeq (p_EOABIlock)) & sgd_restrictionAbs (eoa_res) <=
p_EOAAbs & p_EOAAbs < sgd_restrictionAbs (res_after_eoa) & ! ri. (ri: ran (sgd_blockUpRestrictionSeq (p_EOABIlock)) => ri <= eoa_res or res_after_eoa <=ri)) & ((prj2 (
t_block, t_direction) (over_track (ii)))=c_down =>eoa_res : ran (sgd_blockDownRestrictionSeq (p_EOABlock)) & res_after_eoa : ran (sgd_blockDownRestrictionSeq (
p_EOABIlock)) & sgd_restrictionAbs (eoa_res) >= p_EOAAbs & p_EOAAbs > sgd_restrictionAbs (res_after_eoa) & ! ri. (ri: ran (sgd_blockDownRestrictionSeq (p_EOABIlock
)) => ri <= eoa_res or res_after eca<=ri)) & p_ XZMSSWorst +p_X2MDSS + (SIGMA (jj). (jj:1..ii | SIGMA (pre_res). (pre_res : t_restriction & ((prj2 (t_block,
t_direction) (over_track (jj))) = c_up => pre_res : ran (sgd_blockUpRestrictionSeq ((prjl (t_ block t_direction) (over_track (j JJ))& ((pri2 (t_block, t_ direction) (
over_track (jj)))=c_down => pre_res : ran(sgd_blockDownRestrictionSeq ((prj1 (t_block, t_dlrectlon) (over_track (jj)))))) & (jj=1=>not(pre_res <= p_X2MRes)) &
(jj=ii=>pre_res <=eoa_res) | sgd_ restrlctlonDeItaSqueed (pre_res)))) ({c_up |>(sgd_restrictionAccel (eoa_res) * ((sgd_restrictionAbs (res_after_eoa) p_EOAAbs) /
1024)) /2, c_down |>(sgd restrictionAccel (eoa_res) ((p_EOAAbs sgd_restrictionAbs (res_after_eoa))/1024))/2}((prj2 (t_block, t_direction) (over_track (ii)))
)>0))or(# (eoa_res, ii).(eoa_res :t_restriction & ii : dom (over_track) & (ii = 1 => not (eoa_res <= p_X2MRes)) & p_EOABlock = (prj1 (t_block , t_direction) (
over_track (ii))) & ((prj2 (t_block, t_direction) (over_track (ii)))=c_up =>eoa_res : ran (sgd_blockUpRestrictionSeq (p_EOABIlock)) & eoa_res = last(
sgd_blockUpRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) <= p_EOAAbs) & ((prj2 (t_block, t_direction) (‘over_track (ii))) =c_down => eoa_res : ran(
sgd_blockDownRestrictionSeq (p_EOABlock)) & eoa res = last (sgd_blockDownRestrictionSeq (p_EOABIlock)) & sgd_restrictionAbs (eoa_res) >= p_EOAAbs) &
p_X2MSSWorst + p_X2MDSS + (SIGMA (jj) . (jj .ii | SIGMA (pre_res). (pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj)}) = c_up => pre_res :
ran(sgd_blockUpRestrictionSeq ((prjl (t_ block t dlrectlon) (over_track (JJ)))))) & ((prj2 (t_block, t_direction) (‘over_track (jj)))=c_down => pre_res : ran(
sgd_blockDownRestrictionSeq ((prjl (t_block, t direction) (over_track (jj)))))) & (jj=1=>not (pre_res <= p_X2MRes J) & (jj = ii => not (pre_res >=eoa_res)) |
sgd_restrictionDeltaSqSpeed (pre_res)))) + ({ c_up |>(sgd_ restrlctlonAcceI (eoa_res) * ((p_EOAADbs sgd_restrictionAbs (eoa_res))/1024)) /2, c_down |> (
sgd_restrictionAccel (eoa_res) * ((sgd_restrictionAbs (eoa_res) p_EOAAbs) /1024)) /2 } ((prj2 (t_block, t_direction) (over_track (ii)))))>0))

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘

Attribution 4.0 Unported (CC BY 4.0)

)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

REX & Summary

» Well-oiled process in the railways
> No programming error
> Deliverables (models, proofs, code, V&V) accepted for certification
> No fatality since 90s

» B mainly used for programming
> Safety is distributed over several systems
> Low-level Customer Specification Document
> B model verification activity (quite) unsatisfactory

CLeaRsVy

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 24/76
@ [0] Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

CLEARSY Safety Platform

o Safe computing
o Platform architecture

o Applications
<no_code>

<no_problem>

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 25/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

CSP or CSSP ?

50 FAA (MO

» CLEARSY Safety Platorm abbreviated aD
as CSP when there is no risk of L
confusion

" York
> CSSP otherwise Best place to « CSP »

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safe Computing

inputs — F — outputs

4 X
inputs - outputs inputs deactivated

CLeaRsVy

FM/FMICS | How to Model System Properties in a Software Formal Model ° @ | P. 27/76
@ [0: Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

CLEARSY Safety Platform

Safety computer able to handle random failures 4004 Software
Programmed with B for systematic failures 2002 Hardware

Program

SET THEORY
FIRST ORDER LOG Ic Function Implementable Sequfncer

B model

I NTEG E R ; : Safety library E

verification

verification l

i | C translat _
BOOLEAN N . TR, o g o

proof

GRAPHS
et ercy o ke I
No OS | |
No tool needs to be proved | [
Divergent behaviour leads to stop or reboot !
CLea RSV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 28/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

user_component
user_component_i,
inputs logic outputs
inputs_i logic_i outputs_i

read inputs =

BEGIN
I
Il
IZ2

END ;

po <——

BEGIN
ro

END;

po <——

BEGIN
po

END;

po <——
BEGIN

jals)
TR

<-—- read global input(0);
<-- read _global_input(1);
<—- read global input(Z)

get I0 =

<-- read _global_input(0)

get_Il1 =

<-- read global input (1)

get IZ =

<—- read global input(Z)

ca

$
g
S

user app =
BEGIN

divergence_test_var
read inputs;
user logics
write ocutputs
END;

user logic

po <——

BEGIN
po

END;

po <——

BEGIN
po

END

get_ 00 =

= 00

get 01

skip;

Syntax:

pp <-- ff(vv)
represents a call to operation
ff(vv)
- that returns the value pp
Cé”
write outputs =
VAR
1sb
us, IN
edby lsb: (1lsb : uint8 t);
1sb <-- get_00;
write_global_ocutput (0, 1sb);
used by

lsb <-- get_ 01;
write_global_output(l, 1lsb)
END

Programming the CLEARSY Safety Platform

Academic version

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

. : . \iie]

local, global
variables

Non vital

data

read non rephc.ated . read 2%

shared variables

r----—-—-—-——--\

. library
— call, interrupt — areriserinss

—I Shared functions

]
N = Non vital code C |um =

replica 1

Programming the CLEARSY Safety Platform
Industry version

call, interrupt

program

no checked no checked -
. . . . -
replicated variables replicated variables o
replicated variables [crosscheck = replicated variables

| : ' { || e
11 regular : 116 regular :__ ©
Y = operations 1 H = operations I X
G ; - 15 B |a

V=== Vital code B0 |===== V=== Jital code BO |===== |

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Platform screen doors: a safer system

GAPS SIL2 Platform detection
Opening and closing gap filer authorisation

DPAS SIL4 - Train passage detection

Wheel sensor DRF
Axle Counter

COPPILOT SIL3
opening and
Laser Scanner | closing platform
screen doors -
just track

side system

PSD Control command

CLeaRsVy

FM/FMICS | How to Model System Properties in a Software Formal Model ° @ | P. 31/76
@ [0: Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Platform screen doors: a safer system

= System to install to prepare driverless operation

* No direct communication with the train: train arrival and door opening to be
detected with diverse sensors

« SIL4: one failure every 10 000 years

* 99,95% reliability: one train max missed per year

« To be developed from scratch in 6 months

WA ™ 2 A -
yi AT
. -

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model
Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Platform screen doors: a safer system

= Installation on site = Certification

LA
BUREAU VERITAS | M4 |4

COPPILOT.M Stockholm application « série A »

implementing the SIL3 safety function
“Automatic Sliding Doors (ASD) Opening Authorization”

Certificate N*; 6393741 Not a
Date of ssus: 03" March, 2017 || Mathematical
— proof

Platform screen doors controler installed
in Stockholm (Citybanan)

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model Q @ | P. 33/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

It still happens !

Paris : une femme
meurt, happée par son
manteau bloqué dans

les portes du métro

A woman dies after her coat gets
caught in the metro doors

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model
Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

CLEARSY Safety Platform

Building blocks developed for platform screen doors (PSD) controllers
French R&D project for academic-version safety computer

2020

Industry-ready generic safety computer developed

2021

Platform certified EN50129 SIL4

2023-2024 Myperviseur de s6os

Deployed in Brisbane to control PSD

2024

Deployed for ground and underwater autonomous mobility
French R&D project to add cybersecurity

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 35/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

REX & Summary

» Platform & B modelling accepted for certification
» Programming is still low level

» A formal method and a safe computer are not enough
> Environment
> Human factor
> Modifying a system creates new risks

CLeaRsVy

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 36/76
[@ @ Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Data Validation

Mathematical Language
Process

Achievements

Usability Proof

O O O O

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 37/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Properties with the B Mathematical Language

= Modelling language based on set theory and first order predicates
logic (B mathematical language)

Let the set TrackCircuit = {t1, t2, t3, t4, t5} e e e e e s et
Let the function Next € TrackCircuit - TrackCircuit
Example: Next(t1) = t2, Next(t2) = t3, Next(t3) = t4, Next(t4) = t5

Next

Next = {t1 > t2, t2 > 13, t3 > t4, t4 > t5} \
Let the function KpAbs : TrackCircuit > N \
Vx.(xe TrackCircuit A x € dom(Next) = KpAbs (Next(x)) > KpAbs(x))

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 38/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Data Validation

Safety critical constant data 100k data chunk, up to 2k rules
formally specified & model-checked Human errors avoided

CLEARSY

DATA SOLVER

FR Ani SET TH EO RY Prin'cliple's of Soecificai

? verification parweEltang

gg FIRST ORDER LOGIC

§ ? INTEG ER e Com;;g;r;insive

H g BOOLEAN Data “ in French
@ GRAPHS RaillL

txt...) N Data model

~ | T2 certified

References:
* Formally Checking Large Data Sets in the Railways, ICFEM, 2012

* ProB, https://prob.hhu.de/

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model Q @ | P. 39/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Interaction
Reasoning / Validation

» Formalising the safety property: [L,
| svming < en_tain_sear | _’Q_
Train real position on the track
—
» Formalisation of hypotheses linking 5 —
the environment and the software: en._trein_rear emv_train_antenna + T bl
e | S
» Missing concept: maximal 200 (o) S
guaranteed range .- - : >
sw_pbal

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model

Attribution 4.0 Unported (CC BY 4.0)

OD ‘ P. 40/76

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Link with the Formal Data Validation

» SAFEHYPL1 2 : Balises must not be too close to switch toes on its
common incident edge

> Allocation : Formal validation of parameters

54 \ #E
| SAFEHYP1. |

“Too close’ can be calculated: as a function of the Maximum Guaranteed
Range (MGR) and the radius of curvature.

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model 0 @ | P. 41/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Data Valid, step 1: formalization

SRAC2 : Balises must not be too
close to switch toes on its
B) ® Foreach SWITCH of switch,
common incident edge o let TOE_POSITION be the position of the switch,

e {1} verify that TOE_POSITION is a valid position
e if TOE_POSITION is a valid position,

Processing

e let MIN_DIST_ZONE be the zone covering a distance of
systemParameter::MIN DISTANCE TO_ SWITCH_TOE starting from TOE_POSITION and in
direction of the COMMON edge of the switch,

o e for each element DETECTIONPOINT of detectionPoint,

o {2} verify that DETECTIONPOINT is not located inside MIN_DIST_ZONE

formalization
Messages

e {1} "WARNING : For switch '%switch: : NAME(SWITCH)%', we can't find a valid toe position from its node
"%switch: :node(SWITCH)%'."

e {2} "Forswitch '%switch: : NAME(SWITCH)%', detection point
'"%detectionPoint : : NAME(DETECTIONPOINT)%' is located at less than
'"%systemParameter::XX AC_MIN DISTANCE TO_SWITCH TOE%'fromitstoe '%TOE_POSITION%'."

CLe a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ P. 42/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Data Valid, step 2: formal validation rule design

Processing

® Foreach SWITCH of switch,
o let TOE_POSITION be the position of the switch,
o {1} verify that TOE_POSITION is a valid position
o if TOE_POSITION is a valid position,
e let MIN_DIST_ZONE be the zone covering a distance of
systemParameter::MIN DISTANCE_TO_SWITCH_TOE starting from TOE_POSITION and in
direction of the COMMON edge of the switch,
o for each element DETECTIONPOINT of detectionPoint,
e {2} verify that DETECTIONPOINT is not located inside MIN_DIST_ZONE

Messages

® {1} "WARNING : For switch '%switch: : NAME(SWITCH)%', we can't find a valid toe position from its node
"Yswitch: :node(SWITCH)%'."

{2} "For switch '%swi tch: : NAME(SWITCH)%', detection point
'%detectionPoint : : NAME(DETECTIONPOINT)%' is located at less than
'%systemParameter::XX_AC_MIN_DISTANCE_TO_SWITCH_TOE%'fromitstoe '%TOE_POSITION%'."

Formal Model
Design

SWITCH, TOE_POSITIONS
RE

SWITCH : acc::switch
& TOE_POSITIONS = ran(s(node, refEdge, offset).(

node = acc::switch_ node (SWITCH)

& refEdge : ran(acc::nods_EDGE (node))

& refEdge'incidence = ENU_INCIDENCE__COMMON

& ((refEdge’edge : dom(acc::edge_nodeBegin |> (node}) & offset = 0)

or

(refEdge'edge : dom(acc::edge_nodeEnd |> [node}) & offset = acc::edge_ LENGTH (zefEdge’edge) -1))
1
rec(edgs : refEdge'sdge, offset : offset)

its node '$2'.7

"For switch '8l', an't find a valid toe positi
ARG acc::switch_ NAME (SWITCH) TYPE STRING
ARG acc::switch_node (SWITCH) TYPE INTEGER
DATA VERTFIED
DATA acc::switch_node INDEX SWITCH

card(TGE_POSITIONS) > 0

TOE_POSITION, SYSPARAM, MIN_DIST_ZONE, DETECTIONPOINT

RE
TOE_POSITION : TOE_POSITIONS
& SYSPARAM : dom(acc::systemParameter_ XX_AC_MIN_DISTANCE_TO_SWITCH_TOE)
& MIN_DIST_ZONE =
if TOE_POSITION'offset = 0
then
ic::multi zone union(ic::multi DIRECTED ZONE_ to_multi ZONE(ic::zones_distance from point (TOE_POSITION, ENU_UPDOWN_UP, acc::systemParsmeter_ XX AC MIN DISTANCE_TO_SWITCH TOE (SYSPARAM))))

else
ic::multi_zone_union(ic::multi DIRECTED_ZONE_ to_multi_ZONE (ic::zones_distance_from_peint (TOE_POSITION, ENU_ UPDOWN__DOWN, acc::systemPazametez_ XX_AC_MIN_DISTANCE_TO_SWITCH_TOE (SYSPARAM))))

& DETECTIONPOINT : acc::detectionPoint

) THEN
VERTFY
e::is_position_in_zone (acc::detectionPoint_ POSITION (DETECTIONPOINT), MIN DIST_ZONE) = FALSE
MESSAGE
“For switch '$1', detection point '$2' is located at less than '83' its toe '841."
ARG acc::switch_ NAME (SWITCH) TYPE STRING
ARG acc::detectionPoint_ NAME (DETECTIONEOINT) TYPE STRING
ARG ic::DTY_ LENGTH _tostring(acc::systemParameter_ XX _AC_MIN_DISTANCE TO_SWITCH_TOE(SYSPARAM)) TYPE STRING
ARG ic::DTY__POSITION _tostring(TOE_POSITION) TYPE STRING
DATA VERTFIED
DATA acc::detectionPoint_POSTTION INDEX DETECTIONPOINT
SAFETY_LEVEL
cavaliiSIL4
ENDVERIEY
ENDECR
ENDSELECT

LEedRSY

FM/FMICS | How to Model System Properties in a Software Formal Model

P. 43/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Achievements

First tool to verify embedded topology data
For Certification

2012

First tool integrated into CBTC metro dev process

2018

First application to ERTMS (beacons)

2024

Core tool certified 50128 T2
Applied by major train manufacturers and metros
Call for tenders requiring formal data validation

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 44/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Data Validation: the proof !

» TGV overspeed over a switch
>170 km/h instead of 100 km/h in La Milesse (France)
> due to errors not detected during human data validation (2019)

REPUBLIQUE -
FRANCA?SE BEA-TT

> B EA_ I I S | I p p O rtS F M Liberré Bureau d’enquétes sur les accidents de transport terrestre
Fgalité
Fraternité

“Given the difficulty of controlling the growing quantity of parameter data, the
use of validation algorithms is essential. The use of innovative formal methods,

based on advanced mathematical concepts, is one answer.”

i

References:
* https://www.bea-tt.developpement-durable.gouv.fr/rapport-d-enquete-sur-la-survitesse-d-un-tgv-le-22-a1077.html

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 45/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://www.bea-tt.developpement-durable.gouv.fr/rapport-d-enquete-sur-la-survitesse-d-un-tgv-le-22-a1077.html

Towards the limits again

For each GradientTopology (GradientTopology.BOT-Zone) totally included in a segment, a Gradient (Gradient.BOT-
Zone) is created with the same attributes.

For GradientTopology intersecting different segments, several Gradients (Gradient.BOT-Zone) are created so that each
of them is located in"Only one segment.

When the gradient is constant (GradientTopology.isConstant = Yes):
- the variable gradient information (Gradient.VariableGradient) is not set.
- the constant gradient information is set with the same information of GradientTopology for both parts.

- the elevationDifference.elevationEnd of the partl and elevationDifference.elevationStart of the part2 (reference to the
above figure) are equal to elevationStart + gradient*Length1.

- the information isConstant is set to Yes for both parts.
When the gradient is not constant (GradientTopology.isConstant = No):
- the constant gradient information (ConstantGradient) is not set.

- the elevationDifference.elevationEnd of the partl and elevationDifference.elevationStart of the part2 sreferen_ce to the
above figure) are equal to elevationStart +2*radius*sin(Lengthl/ (2*radius))*sin(gradientStart +Length1/ (2*radius)).

- the information radius and transitionCurveType of the variableGradient information are the same for both parts (as
initial GradientTopology information)

- the information 8_radientEnd for partl and gradientStart of part2 for variableGradient information are set to
(gradientEnd-gradientStart)/(Lengthl +Length2)*Lengthl + gradientStart.

- the information isConstant is set to No for both Part.

CLe a R SV FM/FMICS | How to Model System Properties in a Software Formal Model

Attribution 4.0 Unported (CC BY 4.0)

OD ‘ P. 46/76

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety Reasoning

o Formal System Proof
o Achievements

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 47/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal System Proof

Safety reasoning exhibited (“why its was designed this way”)
For legacy systems and never implemented specs

Tender (operators)
Design (suppliers)
f§ SET THEORY | ' Defects ' Defects
Fd FIRST ORDER LOGIC | Requirements
’z INTEGER NOK NOK
é8 BOOLEAN Safety reasoning in Mathematical
= GRAPHS . natural language insurance | u©‘
oal / othesis / J —
S emoncaration daTeLIer; ok
t I

Adjustments (ex: implicit hypothesis)
References:

* Formal Proofs for the NYCT Line 7 (Flushing) Modernization Project, ABZ, 2012
* Safety Analysis of a CBTC System: A Rigorous Approach with Event-B, RSSR, 2017

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 48/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Achievements

2010

New York City Transit (Culver, QBL line CBTC, 8th Avenue Line)
Proof of a new safety automation

Call for tender mentioned Formal Methods

2020-2024

RATP (L3, L5, L9, L6, L11)
Safety proof of OCTYS CBTC

2023-2026

SNCF (Marseille-Vintimiglia)
Safety proof of world-first ETCS L3 hybrid

2024

Calls for tender mention Formal Methods

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 49/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Summary

» Dealing with the safety reasoning is worthwhile
» \Works for legacy systems (safety issues found)
» \Works for new, never implemented systems

CLe a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 50/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Global Summary

» Safety critical doesn’t mean that nothing bad could happen
» Dealing with safety brings lots of technicalities (Hw, SW, env)
» Formal Methods are tools among other tools

» Properties in the B models are often low level

» « safety problems » still happen

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 51/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Question

» How can we
> make the whole process more interesting / more efficient ?
> increase the level of confidence ?

CLeaRsVy

FM/FMICS | How to Model System Properties in a Software Formal Model ° @ | P. 52/76
@ [0: Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

B+

o The Holy Grail
o The Holy Grenade of Antioch
o Implementing the Holy Grenade Launcher

Courtesy of Lilian Burdy, CLEARSY

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 53/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

The Holy Grall

A 30 NI NS RSOV) <24 07001 37835 B 5 2 1 ASPH, e OROUPE T RATE

Formal methods as part of RATP’s DNA
C. Andlauer, RATP
RSSRail 2016, Paris

SR Pormat inethiods curfant Coverane
v, 3
A
& : ¥ 3|
AVETEM \\) Evant B
£ IR

/L;

The PERF Approach for Formal Verification o 1 pcg:—* }
D. Bonvoisin, RATP S x Bmmhod i

\/'

RSSRail 2016, Paris

Integral Formal Proof : A Verification
Approach to Bridge the Gap between
System and Software Levels in

Railway System

Alexandra Halchin & al
RSSRail 2023, Berlin

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 54/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Monty Python and the Holy Grail. Courtesy of
Holy Grenade Specification MonPyion

27

-

= 4 ~
- -~
First shalt thou take out the Holy.Pin.
Then shalt thou count todhree, no more, no less. o
Three shall be the number thou shalt count,
_and-thefumber of the*Countingshall be three.
“Four shalt thou not count, neither ceunt thou two,
excepting that thou then proceed to three. .
Five is right out. & " : —
Once thesnumber three, being the third number, be reached,
then lobbest thou thysHoly Hand Grenade of Antioch towards thy foe,

who, being naughty in My sight, shall.snuff it.

—

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model
Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Exercise
 Determine the expected safety property

e ModelitinB

* Implement catapult software that must prove
Holy Grenade that it maintains the property using
unambiguous assumptions about the system's
hardware components.

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 56/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety Property

¢ S, . . .
/ clock: \, discretised current time
i pullpin: i set of discretised instants where grenade has been pulled
| q
{ catapulting: | set of discretised instants where grenade catapult is actionned
S V4
Variables of the system with a precise meaning
CLea R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 57/76
Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety Property

clock: discretised current time
pullpin: set of discretised instants where grenade has been pulled
catapulting: set of discretised instants where grenade catapult is actionned

clock
—————————————— LN
A% ® B . t
pullpin © S===mmmeee—— - catapulting = &
C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 58/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Safety Property

Vto.(ty € pullpin A ty+3 < clock = t,..t;+3 M catapulting # &)

clock: discretised current time
pullpin: set of discretised instants where grenade has been pulled
catapulting: set of discretised instants where grenade catapult is actionned

clock
R — \
AW % < % 1 _ t
pullpin Y i catapulting
1 8
.t
C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ | P. 59/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Specification

watchdogTimer =
MACHINE The_Holy Hand_Grenade BEGIN
VARIABLES clock := clock + 1 | |
pullpin, pullpin :(pullpin < 1..clock+1
catapulting, A pullpin - pullpinS0 < {clock+1})
clock END;
INVARIANT
catapult =
INITIALISATION BEGIN
catapulting (catapulting < 1..clock
OPERATIONS A catapulting - catapulting SO — {clock})
END

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 60/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Specification

watchdogTimer =
BEGIN
clock :=clock +1 ||
pullpin :(pullpin < 1..clock+1
A pullpin - pullpinSO < {clock+1})

The environment -

| | END;
catapult =
BEGIN
The catapult = catapulting e(catapulting 1..clock
A catapulting - catapulting SO — {clock})
END
CLea R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 61/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Refinement

catapult =
BEGIN
IF clock-2..clock M pullpin # &
THEN
catapulting := catapulting U {clock}
ELSE
catapulting :: {catapulting, catapulting U {clock}}
END
END

The catapult made more precise

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 62/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Refinement with deadline from CSP

watchdogTimer =

SELECT
The CLEARSY Safety Platform clock < catapulting_deadline

ensures that if catapult is not | THEN
called frequently then
It enters a defect mode

clock :=clock + 1 ||
pullpin €(pullpin < 1..clock+1
A pullpin - pullpin SO < {clock+1})

The defect mode El\iD; it =
should induce physically catapuit =
BEGIN

a catapulting and a pullpin
P & PUTP IF clock-2..clock M pullpin # &

END| | catapulting_deadline :: clock..clock + 2
END

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 63/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Cut MACHINE for Data Acquisition

input_watchdogTimer =
BEGIN
input_clock :=input_clock + 1 ||
No direct link with the upper level pullpin e(pullpin 1..input_clock+1
Identifiers are renamed A pullpin - pullpin SO c {input_clock+1})
END;

input_get_pullpin =
BEGIN
input_pullpin €(input_pullpin € BOOL &
(input_clock-2..input_clock M pullpin # &
= input_pullpin = TRUE))
END

pullpin (system variable)
is linked with
input_pullpin (software variable)

CLEdR

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 64/76
Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

MACHINE for Catapulting

catapult_watchdogTimer =
SELECT
clock < catapulting_deadline
THEN
clock :=clock + 1
END;
catapult_catapulting =
BEGIN
IF input_pullpin = TRUE
THEN
catapulting := catapulting U {clock}
END || catapulting_deadline := clock + 2
END

This part contains the exported
constraints to this subsystem

C Le a R FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 65/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Resulting Architecture T

rmc_formules_r
rmc_formules_i

rmc_capteur_deplacements_i

rmc_deplacement
rmc_deplacement i

Ll v
rmc_deplacement cst i

rmc_deplacement 1 r
rmc_deplacement_1_2r
rmc_deplacement 1 3r

rmc_deplacement _cst 1 i rmc_deplaiement_l_l

rmc_deplacement 2
rmc_deplacement 2 _r
rmc_deplacement 2 2r
rmc_deplacement 2 i

Krmc_formules_cst_i

rmc_entrees | B

| rmc_entrees_r |

| rmc_deplacement _secteur |
| rmc_deplacement _secteur i |

CLEearsvy

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 66/76
[@ @ Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

What is missing ?

» Time between decision and effective physical catapulting

» OPERATIONS watchdogTimer could happen while catapult
IS being executed

» Performances as a side-note in the safety demonstration
> Physical-arithmetic modelling would add unwanted complexity

CLe a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 67/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Application to PSD Control in Brisbane (2024)

“The on-board vital software shall activate a side selection output only if a
valid wayside message denoting an established communication indicates

the corresponding side.”

Communication is ensured by beacons energized
by the train

Only sections with PSD have beacons

Driver has to push a button for a side
Beacons have ID plugs

Valid message received recently from beacon

Software behaviour based on system-level
properties and not (only) on software defined
variables

vVvyvVvVVY V

v_ob_trainAlignedLeftSide
:= bool(v_ob_commEstablished = TRUE
A V_ob_commRestrictive = FALSE

A V_ob_communicatingAntenna €
{e_TSA2,e_TSA3})

SIL3 system

8 platforms

150 safety computers installed onboard
8 safety computers installed on trackside

vVvyvyy

C Le a R SV FM/FMICS | How to Model System Properties in a Software Formal Model ° @ | P. 68/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Formal Methods in Action

SW

Re
Dev g Ada, ASM C
S —
pata . Req - model anslatc ’ Proof odel checke Valid
_ validation Byata J Y Interviews ¢ Jpro[B
(System \Req C NL B Proof eorem prove Verif
Specs P . . D -
pees F1o% Usign Interviews Valid
' ()
[Smartcar Req 3 ~ Event-B Proof COrEM Prover Juyim
certification IT Interviews 5]
[a in 2 |G
Req
Rl : Assertio Analyzer ; Proof eorem prove Verif
verificatio C

C Le a R S\/ FM/FMICS | How to Model System Properties in a Software Formal Model ° @ ‘ P. 69/76

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

Conclusion

» Why do we use formal methods ?
| > We are more efficient, more competitive, more flexible
> Enhance the safety demonstration (clarity, test vs proof even if we test)
> Help us to keep things under control
> We find problems on existing systems / never implemented specs
» What perspective ?
> Problem not yet « solved »: incidents, accidents still happen
> FM requirement appears in call for tender
> Applied also in non-safety related domains (“do not lose the drone”)
> Room for improvement, contribution to SotA
> Human is central
> Universities should produce “Leonardos”

CLeaRsVy

FM/FMICS | How to Model System Properties in a Software Formal Model @ @ ‘ P. 70/76
@ [0] Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

CLEearsyvy o

Safety Solutions Designer

AIX
LYON

https://mooc.imd.ufrn.br/

STRASBOURG

Thank you
for your attention

o A 3 y ﬁ
— FORMAL IS FUN !

massive open
online course

THIERRY.LECOMTE@CLEARSY.COM Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

	Section par défaut
	Diapositive 1
	Diapositive 2 Common Thread

	Safety
	Diapositive 3 SAFETY
	Diapositive 4 Failing Software-Based Systems
	Diapositive 5 Safety @ Railways
	Diapositive 6 Safety @ Railways
	Diapositive 7 Safety @ Railways @ CLEARSY
	Diapositive 8 Formal Methods to Handle Failing Systems

	B
	Diapositive 9 B for C&C not Threaded Safety Software
	Diapositive 10 Formal Software Development
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15 Software Formal Development
	Diapositive 16 Software Formal Development
	Diapositive 17 Software Formal Development
	Diapositive 18
	Diapositive 19 Software Formal Development
	Diapositive 20 B: what for ?
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24 REX & Summary

	CSP
	Diapositive 25 CLEARSY Safety Platform
	Diapositive 26 CSP or CSSP ?
	Diapositive 27 Safe Computing
	Diapositive 28 CLEARSY Safety Platform
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35 CLEARSY Safety Platform
	Diapositive 36 REX & Summary

	VDD
	Diapositive 37 Formal Data Validation
	Diapositive 38
	Diapositive 39 Formal Data Validation
	Diapositive 40 Interaction Reasoning / Validation
	Diapositive 41 Link with the Formal Data Validation
	Diapositive 42 Data Valid, step 1: formalization
	Diapositive 43 Data Valid, step 2: formal validation rule design
	Diapositive 44 Achievements
	Diapositive 45 Formal Data Validation: the proof !
	Diapositive 46

	Safety Reasoning
	Diapositive 47 Safety Reasoning
	Diapositive 48 Formal System Proof
	Diapositive 49 Achievements
	Diapositive 50 Summary
	Diapositive 51 Global Summary
	Diapositive 52 Question

	B+
	Diapositive 53 B+
	Diapositive 54 The Holy Grail
	Diapositive 55 Holy Grenade Specification
	Diapositive 56 Exercise
	Diapositive 57 Safety Property
	Diapositive 58 Safety Property
	Diapositive 59 Safety Property
	Diapositive 60 Specification
	Diapositive 61 Specification
	Diapositive 62 Refinement
	Diapositive 63 Refinement with deadline from CSP
	Diapositive 64 Cut MACHINE for Data Acquisition
	Diapositive 65 MACHINE for Catapulting
	Diapositive 66 Resulting Architecture
	Diapositive 67 What is missing ?
	Diapositive 68 Application to PSD Control in Brisbane (2024)

	Conclusion
	Diapositive 69 Formal Methods in Action
	Diapositive 70 Conclusion
	Diapositive 71

