
P. 1/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

THIERRY.LECOMTE@CLEARSY.COM

FMICS

SEP2024

B+

How to Model System Properties

in a Software Formal Model

—

Attribution 4.0 Unported (CC BY 4.0)

Thierry Lecomte
R&D Director

« Presentation of a more integrated use of the B method
without changing the language and the tool.»

Art mostly generated
with ChatGPT or similar

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 2/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Common Thread

How the last 30 years

changed our view

on safety critical

software development

in the railways

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 3/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

SAFETY

o Failing systems
o Safety critical
o Standards
o Safety in practice

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 4/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Failing Software-Based Systems

Specification

Design

Source code

Natural language
requirement

Binary code

Wrong
specification

Wrong
program

Wrong
binary

Wrong
execution

Bad
hardware

Failing
hardware
(µC, I/O)

Wrong
environment
specification

Wrong
exploitation
procedure

//

FM

FMFM

FM

TEST

TEST

FM

RE

FMFormal Methods

TESTTesting

REReverse Engineering

//Redundant Process

RE

//

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 5/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety @ Railways

EN5012{6, 8, 9}

STRONG STANDARDS

SAFETY INTEGRITY LEVELS
SIL3 : 10-7/h
SIL4 : 10-9/h

CATASTROPHIC
FAILURES

CERTIFICATION
NL safety demonstration
Convince responsible human expert
Formal methods highly recommended

SYSTEMATIC
FAILURES

Specification
Design
Implementation
Environment
Exploitation

RANDOM
FAILURES

Execution machine
Entropic hardware

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 6/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety @ Railways

CERTIFICATION
NL safety demonstration
Convince responsible human expert
Formal methods highly recommended

SYSTEMATIC
FAILURES

Specification
Design
Implementation
Environment
Exploitation

APPLIED TO

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 7/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety @ Railways @ CLEARSY

CERTIFICATION
NL safety demonstration
Convince responsible human expert
Formal methods highly recommended

SYSTEMATIC
FAILURES

Specification
Design
Implementation
Environment
Exploitation

APPLIED TO

FORMAL SOFTWARE DEVELOPMENT
FORMAL DATA VALIDATION
FORMAL SAFETY PROOF

RANDOM
FAILURES

Execution machine
Entropic hardware

SAFETY
COMPUTER

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 8/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal Methods to Handle Failing Systems

Specification

Design

Source code

Natural language
requirement

Binary code

Wrong
specification

Wrong
program

Wrong
binary

Wrong
execution

Bad
hardware

Failing
hardware
(µC, I/O)

Wrong
environment
specification

Wrong
exploitation
procedure

B
for C&C
non-threaded
safety software

Event-B
for safety
reasoning

B

for data
validation

CLEARSY SAFETY
PLATFORM

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 9/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

B for C&C
not Threaded Safety Software

o Failing systems
o Safety critical
o Standards
o Implementation

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 10/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal Software Development

References:
• The B-book - Assigning Programs to Meanings, Cambridge Press, 2001
• The First Twenty-Five Years of Industrial Use of the B-Method, FMICS, 2020

Safety critical software
formally specified & proved

SET THEORY
FIRST ORDER LOGIC
INTEGER
BOOLEAN
GRAPHS

No unit test
Most integration test avoided

IDE DEVELOPED DURING 25+ YEARS
FREELY AVAILABLE
CERTIFIED EN50128 T2 IN 2024

https://www.atelierb.eu/en/

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://www.atelierb.eu/en/

P. 11/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

B Specification

B Implementation

C generated code

« Only inactive sequences can be added to the

active sequences execution queue. »

Natural language

requirement

Binary code

Behaviour

+

properties

Behaviour

+

properties

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 12/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

B Specification

B Implementation

C generated code

« Only inactive sequences can be added to the

active sequences execution queue. »

Natural language

requirement

Binary code

Proof (refinement)

Proof (coherence)

Proof (coherence)

Cyclic software

single-thread

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 13/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

are referenced by

should establish

should preserve

Static aspect
Dynamic aspect

static properties

are consistent

Proof obligations

Proof Obligations from B Models

SETS

CONSTANTS

VARIABLES

INVARIANT

INITIALISATION

OPERATIONS

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 14/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

≡ The software code is generated from the model
Code is readable, very close to the model and is easily

checked

B Code Generation

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 15/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Software Formal Development

►Atelier B Technology [C, C++, Prolog-like]

▷Automatic refinement based on Siemens
inference engine

• Integrated into Atelier B

• Applications up to 500 kloc for train control (NY metro,
CdG shuttle) and software engineering (interpreter,
compiler)

▷Code generators:
• Ada (proprietary)(product specific)

• C (generic, 32-bit MCU)(generation of Frama-C ACSL)

• Rust

• RIP: Instruction List, Ladder, LLVM, VHDL

References:
• Applying a Formal Method in Industry: A 15-Year Trajectory, FMICS, 2009
• On B and Event-B: Principles, Success and Challenges, ABZ, 2018
• B2rust, https://github.com/CLEARSY/b2rust

2006

2006-2024

2001-2024

2023

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://github.com/CLEARSY/b2rust

P. 16/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Software Formal Development

►Atelier B Technology [C, C++, Prolog-like]

▷Specific proof tools developed
• Main prover as an inference engine with using 2600 rules

• Predicate prover to demonstrate 80% of the rules

• Main prover stuck in 1998 (interactive demos could not

survive prover improvement)

• Extension of interactive proof language, GUI

• Connexion with third party provers (Alt-Ergo, CVC3,

iProver, Vampire, Z3, Zenon)

• 500k proof obligations publicly available for benchmark

• Connexion with Generative AI for proof script generation

References:
• ANR Projects Bware, BLASST, ICSPA - ECSEL Project AIDOaRT
• Atelier B oPEn ResOurces, https://github.com/CLEARSY/apero

1998-2024

1998

2008-2027

The BWare Platform for the
Automated Verification of B Proof Obligations

2022-2024

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://github.com/CLEARSY/apero

P. 17/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Software Formal Development

►Atelier B Dissemination
▷ Continuous low frequency professional training

▷ Internal training for volunteers and FM profiles

▷ Continuous academic courses with CLEARSY Safety Platform

▷ Downloads:

• 4500 / teaching semester,

• 1300 Atelier B Prover plug-in for Rodin platform

References:
• Programming Handbook, https://github.com/CLEARSY/CSSP-Programming-Handbook

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 18/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

https://mooc.imd.ufrn.br/

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 19/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Software Formal Development

1998

Paris L14 Automatic Train Protection (ATP)
Emergency braking in case of danger (86 kloc B, 110 kloc Ada)

2000-2024

Used by ~30% radio-based control metro worldwide
CDGVAL shuttle (500 kloc / automatic refinement)

2006-2024

Used for Paris L1, L4, L13, L14 (Olympics)

2024-2030

To be used for Paris L15, L16, L17, L18

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 20/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

B: what for ?

►Driving is not safety related

▷No need of formal methods to drive a train

►Safeguard

▷Localization (graphs)

▷Kinetic energy control (integer)

▷Emergency braking (Boolean equations)

Braking curves

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 21/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Modern Automatic Train Protection

Software (2015)

root

Top level implementation

– Imports 55 components

– Specify top level one-cycle function:

• Compute location, manage kinetic energy, control PSD, trigger

emergency braking, etc.

Metrics
– 233 machines, 50 kloc

– 46 refinements, 6 kloc

– 213 implementations, 45 kloc

– 3 000 definitions

– 23 000 proof obligations (83 % automatic proof)

– 3 000 added user rules (85 % automatic proof)

The specification is not

fully contained

in the toplevel component

Formal Methods and Railways: metrics

The specification is not

« avoid collision »

but

« brake if not authorized to go forward »

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 22/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

« There is overEnergy iff I can find a track section starting at X2M, complying with the dynamic
chaining of blocks, on which I can

- either find a restriction belonging to a block such as the energy on that restriction, computed by
summing deltas of energy of all restrictions located between X2MRes and this restriction, is
greater than the energy associated to this restriction,

- or find 2 restrictions belonging to the EOA block, one being before the track section under
consideration, the other after the track section, such as the energy associated to the EOA by
using these restrictions is positive. »

[Extract from Automatic Train Protection specification]

Towards the limits …

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 23/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

p_over := bool (# (over_track) . ((over_track : seq (t_block * t_direction) & over_track /= {} & first (over_track) = p_X2MBlock |> p_X2MDir & ! ii . (ii : 1 .. size (over_track
) - 1 => (over_track) (ii) : dom (sidb_nextBlock)) & ! ii . (ii : 1 .. size (over_track) => sidb_nextBlock ((over_track) (ii)) = (over_track) (ii + 1))) &(# (over_res) . ((
over_res : sidb_restrictionApplicable & (# ii . (ii : dom (over_track) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_up => over_res : ran (sgd_blockUpRestrictionSeq
((prj1 (t_block , t_direction) (over_track (ii)))))) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_down => over_res : ran(sgd_blockDownRestrictionSeq ((prj1 (
t_block , t_direction) (over_track (ii)))))) & (ii = 1 => not (over_res <= p_X2MRes)) & p_X2MSSWorst + p_X2MDSS + (SIGMA(jj) . (jj : 1 .. ii | SIGMA (pre_res) . (
pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj))) = c_up => pre_res : ran (sgd_blockUpRestrictionSeq ((prj1 (t_block, t_direction) (over_track (jj))
)))) & ((prj2 (t_block , t_direction) (over_track (jj))) = c_down => pre_res : ran (sgd_blockDownRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & (jj
= 1 => not (pre_res <= p_X2MRes)) & (jj = ii => not (pre_res >= over_res)) | sgd_restrictionDeltaSqSpeed (pre_res)))) > sgd_restrictionSquareSpeed (over_res) & (
over_res : sgd_restrictionFront => p_X2MResDist + ((SIGMA (ti) . (ti : 1 .. ii | sgd_blockLength ((prj1 (t_block , t_direction)((over_track) (ti)))))) ({ c_down
|>sgd_blockLength (p_X2MBlock) sgd_restrictionAbs (p_X2MRes) , c_up |>sgd_restrictionAbs (p_X2MRes) } (p_X2MDir)) ({ c_down |>sgd_restrictionAbs (over_res) ,
c_up |>sgd_blockLength ((prj1 (t_block , t_direction) ((over_track) (ii)))) sgd_restrictionAbs (over_res) } ((prj2 (t_block ,t_direction) ((over_track) (ii)))))) +
sgd_restrictionLength (over_res) > loc_locationUncertainty + c_trainLength))))) or (# (eoa_res , res_after_eoa , ii) . (eoa_res : t_restriction & res_after_eoa : t_restriction
& ii : dom (over_track) & p_EOABlock = (prj1 (t_block , t_direction)(over_track (ii))) & (ii = 1 => p_X2MRes <= eoa_res) & ((prj2 (t_block , t_direction) (over_track (ii)
)) = c_up => eoa_res : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) & res_after_eoa : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) <=
p_EOAAbs & p_EOAAbs < sgd_restrictionAbs (res_after_eoa) & ! ri . (ri : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) => ri <= eoa_res or res_after_eoa <= ri)) & ((prj2 (
t_block , t_direction) (over_track (ii))) = c_down => eoa_res : ran (sgd_blockDownRestrictionSeq (p_EOABlock)) & res_after_eoa : ran (sgd_blockDownRestrictionSeq (
p_EOABlock)) & sgd_restrictionAbs (eoa_res) >= p_EOAAbs & p_EOAAbs > sgd_restrictionAbs (res_after_eoa) & ! ri . (ri : ran (sgd_blockDownRestrictionSeq (p_EOABlock
)) => ri <= eoa_res or res_after_eoa <= ri)) & p_X2MSSWorst + p_X2MDSS + (SIGMA (jj) . (jj : 1 .. ii | SIGMA (pre_res) . (pre_res : t_restriction & ((prj2 (t_block ,
t_direction) (over_track (jj))) = c_up => pre_res : ran (sgd_blockUpRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & ((prj2 (t_block , t_direction) (
over_track (jj))) = c_down => pre_res : ran(sgd_blockDownRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & (jj = 1 => not (pre_res <= p_X2MRes)) &
(jj = ii => pre_res <= eoa_res) | sgd_restrictionDeltaSqSpeed (pre_res)))) ({ c_up |>(sgd_restrictionAccel (eoa_res) * ((sgd_restrictionAbs (res_after_eoa) p_EOAAbs) /
1024)) / 2 , c_down |>(sgd_restrictionAccel (eoa_res) * ((p_EOAAbs sgd_restrictionAbs (res_after_eoa)) / 1024)) / 2 } ((prj2 (t_block , t_direction) (over_track (ii))))
) > 0)) or (# (eoa_res , ii) . (eoa_res : t_restriction & ii : dom (over_track) & (ii = 1 => not (eoa_res <= p_X2MRes)) & p_EOABlock = (prj1 (t_block , t_direction) (
over_track (ii))) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_up => eoa_res : ran (sgd_blockUpRestrictionSeq (p_EOABlock)) & eoa_res = last(
sgd_blockUpRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) <= p_EOAAbs) & ((prj2 (t_block , t_direction) (over_track (ii))) = c_down => eoa_res : ran(
sgd_blockDownRestrictionSeq (p_EOABlock)) & eoa_res = last (sgd_blockDownRestrictionSeq (p_EOABlock)) & sgd_restrictionAbs (eoa_res) >= p_EOAAbs) &
p_X2MSSWorst + p_X2MDSS + (SIGMA (jj) . (jj : 1 .. ii | SIGMA (pre_res) . (pre_res : t_restriction & ((prj2 (t_block , t_direction) (over_track (jj))) = c_up => pre_res :
ran(sgd_blockUpRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & ((prj2 (t_block , t_direction) (over_track (jj))) = c_down => pre_res : ran(
sgd_blockDownRestrictionSeq ((prj1 (t_block , t_direction) (over_track (jj)))))) & (jj = 1 => not (pre_res <= p_X2MRes)) & (jj = ii => not (pre_res >= eoa_res)) |
sgd_restrictionDeltaSqSpeed (pre_res)))) + ({ c_up |> (sgd_restrictionAccel (eoa_res) * ((p_EOAAbs sgd_restrictionAbs (eoa_res)) / 1024)) / 2 , c_down |> (
sgd_restrictionAccel (eoa_res) * ((sgd_restrictionAbs (eoa_res) p_EOAAbs) / 1024)) / 2 } ((prj2 (t_block , t_direction) (over_track (ii))))) > 0))

Towards the limits

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 24/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

REX & Summary

► Well-oiled process in the railways
▷ No programming error

▷ Deliverables (models, proofs, code, V&V) accepted for certification

▷ No fatality since 90s

► B mainly used for programming
▷ Safety is distributed over several systems

▷ Low-level Customer Specification Document

▷ B model verification activity (quite) unsatisfactory

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 25/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

CLEARSY Safety Platform

o Safe computing
o Platform architecture
o Applications

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 26/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

CSP or CSSP ?

►CLEARSY Safety Platorm abbreviated

as CSP when there is no risk of

confusion

►CSSP otherwise
York

Best place to « CSP »

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 27/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safe Computing

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 28/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

CLEARSY Safety Platform

Safety computer able to handle random failures
Programmed with B for systematic failures

SET THEORY
FIRST ORDER LOGIC
INTEGER
BOOLEAN
GRAPHS

4oo4 Software
2oo2 Hardware

No OS
No tool needs to be proved

Divergent behaviour leads to stop or reboot

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 29/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

call

used by

Syntax:
pp <-- ff(vv)
represents a call to operation
ff(vv)
that returns the value pp

Programming the CLEARSY Safety Platform

Academic version

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 30/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Programming the CLEARSY Safety Platform

Industry version

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 31/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Platform screen doors: a safer system

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 32/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

≡ System to install to prepare driverless operation
• No direct communication with the train: train arrival and door opening to be

detected with diverse sensors

• SIL4: one failure every 10 000 years

• 99,95% reliability: one train max missed per year

• To be developed from scratch in 6 months

Platform screen doors: a safer system

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 33/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

≡ Installation on site

Platform screen doors controler installed

in Stockholm (Citybanan)

≡ Certification

Platform screen doors: a safer system

Not a
mathematical

proof

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 34/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

It still happens !

A woman dies after her coat gets
caught in the metro doors

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 35/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

CLEARSY Safety Platform

2006-2019

Building blocks developed for platform screen doors (PSD) controllers
French R&D project for academic-version safety computer

2020

Industry-ready generic safety computer developed

2023-2024

Deployed in Brisbane to control PSD

2021

Platform certified EN50129 SIL4

2024

Deployed for ground and underwater autonomous mobility
French R&D project to add cybersecurity

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 36/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

REX & Summary

►Platform & B modelling accepted for certification

►Programming is still low level

►A formal method and a safe computer are not enough

▷Environment

▷Human factor

▷Modifying a system creates new risks

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 37/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal Data Validation

o Mathematical Language
o Process
o Achievements
o Usability Proof

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 38/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

≡ Modelling language based on set theory and first order predicates
logic (B mathematical language)

Let the set TrackCircuit = {t1, t2, t3, t4, t5}

Let the function Next : TrackCircuit 2 TrackCircuit

Example: Next(t1) = t2, Next(t2) = t3, Next(t3) = t4, Next(t4) = t5

Next = {t1 m t2, t2 m t3, t3 m t4, t4 m t5}

Let the function KpAbs : TrackCircuit 3 N

!x.(x: TrackCircuit & x : dom(Next) y KpAbs (Next(x)) > KpAbs(x))

Properties with the B Mathematical Language

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 39/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal Data Validation

Safety critical constant data
formally specified & model-checked

SET THEORY
FIRST ORDER LOGIC
INTEGER
BOOLEAN
GRAPHS

References:
• Formally Checking Large Data Sets in the Railways, ICFEM, 2012
• ProB, https://prob.hhu.de/

100k data chunk, up to 2k rules
Human errors avoided

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 40/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Interaction
Reasoning / Validation

Train real position on the track

env_train_rear env_pbal
env_train_antenna

sw_pbal

sw_err = 5 unit

sw_dmr = 400 unit

5 (sw_err)400 (sw_dmr)

sw_minp

► Formalising the safety property:

► Formalisation of hypotheses linking

the environment and the software:

sw_minp ≤ env_train_rear

H1) sw_pbal – sw_err ≤ env_pbal ≤ sw_pbal + sw_err

H2) env_train_antenna – env_train_rear ≤ sw_dmr

► Missing concept: maximal

guaranteed range

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 41/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Link with the Formal Data Validation

► SAFEHYP1_2 : Balises must not be too close to switch toes on its
common incident edge
▷ Allocation : Formal validation of parameters

‘Too close’ can be calculated: as a function of the Maximum Guaranteed
Range (MGR) and the radius of curvature.

PMG

SAFEHYP1.2

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 42/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Data Valid, step 1: formalization

SRAC2 : Balises must not be too

close to switch toes on its

common incident edge

formalization

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 43/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Data Valid, step 2: formal validation rule design

Formal Model
Design

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 44/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Achievements

2003

First tool to verify embedded topology data
For Certification

2012

First tool integrated into CBTC metro dev process

2018

First application to ERTMS (beacons)

2024

Core tool certified 50128 T2
Applied by major train manufacturers and metros
Call for tenders requiring formal data validation

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 45/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal Data Validation: the proof !

►TGV overspeed over a switch

▷170 km/h instead of 100 km/h in La Milesse (France)

▷ due to errors not detected during human data validation (2019)

►BEA-TT supports FM

References:
• https://www.bea-tt.developpement-durable.gouv.fr/rapport-d-enquete-sur-la-survitesse-d-un-tgv-le-22-a1077.html

“Given the difficulty of controlling the growing quantity of parameter data, the

use of validation algorithms is essential. The use of innovative formal methods,

based on advanced mathematical concepts, is one answer.”

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/
https://www.bea-tt.developpement-durable.gouv.fr/rapport-d-enquete-sur-la-survitesse-d-un-tgv-le-22-a1077.html

P. 46/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

For each GradientTopology (GradientTopology.BOT-Zone) totally included in a segment, a Gradient (Gradient.BOT-
Zone) is created with the same attributes.

For GradientTopology intersecting different segments, several Gradients (Gradient.BOT-Zone) are created so that each
of them is located in only one segment.

When the gradient is constant (GradientTopology.isConstant = Yes):

- the variable gradient information (Gradient.VariableGradient) is not set.

- the constant gradient information is set with the same information of GradientTopology for both parts.

- the elevationDifference.elevationEnd of the part1 and elevationDifference.elevationStart of the part2 (reference to the
above figure) are equal to elevationStart + gradient*Length1.

- the information isConstant is set to Yes for both parts.

When the gradient is not constant (GradientTopology.isConstant = No):

- the constant gradient information (ConstantGradient) is not set.

- the elevationDifference.elevationEnd of the part1 and elevationDifference.elevationStart of the part2 (reference to the
above figure) are equal to elevationStart +2*radius*sin(Length1/ (2*radius))*sin(gradientStart +Length1/ (2*radius)).

- the information radius and transitionCurveType of the variableGradient information are the same for both parts (as
initial GradientTopology information) .

- the information gradientEnd for part1 and gradientStart of part2 for variableGradient information are set to
(gradientEnd-gradientStart)/(Length1 +Length2)*Length1 + gradientStart.

- the information isConstant is set to No for both Part.

40 lines
Towards the limits again

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 47/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety Reasoning

o Formal System Proof
o Achievements

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 48/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal System Proof

Safety reasoning exhibited (“why its was designed this way”)
For legacy systems and never implemented specs

SET THEORY
FIRST ORDER LOGIC
INTEGER
BOOLEAN
GRAPHS

References:
• Formal Proofs for the NYCT Line 7 (Flushing) Modernization Project, ABZ, 2012
• Safety Analysis of a CBTC System: A Rigorous Approach with Event-B, RSSR, 2017

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 49/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Achievements

2010

New York City Transit (Culver, QBL line CBTC, 8th Avenue Line)
Proof of a new safety automation
Call for tender mentioned Formal Methods

2020-2024

RATP (L3, L5, L9, L6, L11)
Safety proof of OCTYS CBTC

2023-2026

SNCF (Marseille-Vintimiglia)
Safety proof of world-first ETCS L3 hybrid

2024

Calls for tender mention Formal Methods

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 50/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Summary

►Dealing with the safety reasoning is worthwhile

►Works for legacy systems (safety issues found)

►Works for new, never implemented systems

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 51/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Global Summary

►Safety critical doesn’t mean that nothing bad could happen

►Dealing with safety brings lots of technicalities (HW, SW, env)

►Formal Methods are tools among other tools

►Properties in the B models are often low level

►« safety problems » still happen

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 52/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Question

►How can we

▷make the whole process more interesting / more efficient ?

▷ increase the level of confidence ?

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 53/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

B+

o The Holy Grail
o The Holy Grenade of Antioch
o Implementing the Holy Grenade Launcher

Courtesy of Lilian Burdy, CLEARSY

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 54/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

The Holy Grail

Formal methods as part of RATP’s DNA
C. Andlauer, RATP
RSSRail 2016, Paris

Integral Formal Proof : A Verification
Approach to Bridge the Gap between
System and Software Levels in
Railway System
Alexandra Halchin & al
RSSRail 2023, Berlin

The PERF Approach for Formal Verification
D. Bonvoisin, RATP
RSSRail 2016, Paris

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 55/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Holy Grenade Specification

First shalt thou take out the Holy Pin.
Then shalt thou count to three, no more, no less.
Three shall be the number thou shalt count,
and the number of the counting shall be three.
Four shalt thou not count, neither count thou two,
excepting that thou then proceed to three.
Five is right out.
Once the number three, being the third number, be reached,
then lobbest thou thy Holy Hand Grenade of Antioch towards thy foe,
who, being naughty in My sight, shall snuff it.

Monty Python and the Holy Grail. Courtesy of
Monty Python

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 56/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Exercise

• Determine the expected safety property

• Model it in B

• Implement catapult software that must prove
that it maintains the property using
unambiguous assumptions about the system's
hardware components.

Holy Grenade

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 57/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety Property

clock: discretised current time
pullpin: set of discretised instants where grenade has been pulled
catapulting: set of discretised instants where grenade catapult is actionned

Variables of the system with a precise meaning

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 58/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety Property

t

clock

catapulting = 0

clock: discretised current time
pullpin: set of discretised instants where grenade has been pulled
catapulting: set of discretised instants where grenade catapult is actionned

pullpin

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 59/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Safety Property

!t0.(t0 : pullpin & t0+3 < clock y t0..t0+3 i catapulting d 0)

t

clock

clock: discretised current time
pullpin: set of discretised instants where grenade has been pulled
catapulting: set of discretised instants where grenade catapult is actionned

pullpin catapulting

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 60/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Specification

MACHINE The_Holy_Hand_Grenade
 VARIABLES
 pullpin,
 catapulting,
 clock
 INVARIANT
 ...
 INITIALISATION
 ...
 OPERATIONS

watchdogTimer =
 BEGIN
 clock := clock + 1 ||
 pullpin :(pullpin (1..clock+1
 & pullpin - pullpin$0 ({clock+1})
 END;

 catapult =
 BEGIN
 catapulting :(catapulting (1..clock
 & catapulting - catapulting $0 ({clock})
 END

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 61/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Specification

watchdogTimer =
 BEGIN
 clock := clock + 1 ||
 pullpin :(pullpin (1..clock+1
 & pullpin - pullpin$0 ({clock+1})
 END;

 catapult =
 BEGIN
 catapulting :(catapulting (1..clock
 & catapulting - catapulting $0 ({clock})
 END

The environment

The catapult

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 62/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Refinement

catapult =
 BEGIN
 IF clock-2..clock i pullpin d 0
 THEN
 catapulting := catapulting u {clock}
 ELSE
 catapulting :: {catapulting, catapulting u {clock}}
 END
 END

The catapult made more precise

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 63/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Refinement with deadline from CSP
watchdogTimer =

 SELECT
 clock < catapulting_deadline
 THEN
 clock := clock + 1 ||
 pullpin :(pullpin (1..clock+1
 & pullpin - pullpin $0 ({clock+1})
 END;
 catapult =
 BEGIN
 IF clock-2..clock i pullpin d 0
 ...
 END|| catapulting_deadline :: clock..clock + 2
 END

The CLEARSY Safety Platform
ensures that if catapult is not

called frequently then
It enters a defect mode

The defect mode
should induce physically

a catapulting and a pullpin

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 64/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Cut MACHINE for Data Acquisition
input_watchdogTimer =

 BEGIN
 input_clock := input_clock + 1 ||
 pullpin :(pullpin (1..input_clock+1
 & pullpin - pullpin $0 ({input_clock+1})
 END;

 input_get_pullpin =
 BEGIN
 input_pullpin :(input_pullpin : BOOL &
 (input_clock-2..input_clock i pullpin d 0
 y input_pullpin = TRUE))
 END

No direct link with the upper level
Identifiers are renamed

pullpin (system variable)
is linked with

input_pullpin (software variable)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 65/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

MACHINE for Catapulting
catapult_watchdogTimer =
 SELECT
 clock < catapulting_deadline
 THEN
 clock := clock + 1
 END;
 catapult_catapulting =
 BEGIN
 IF input_pullpin = TRUE
 THEN
 catapulting := catapulting u {clock}
 END || catapulting_deadline := clock + 2
 END

This part contains the exported
constraints to this subsystem

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 66/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Resulting Architecture

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 67/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

What is missing ?

►Time between decision and effective physical catapulting

►OPERATIONS watchdogTimer could happen while catapult

is being executed

►Performances as a side-note in the safety demonstration

▷Physical-arithmetic modelling would add unwanted complexity

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 68/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Application to PSD Control in Brisbane (2024)

“The on-board vital software shall activate a side selection output only if a

valid wayside message denoting an established communication indicates

the corresponding side.”

► Communication is ensured by beacons energized
by the train

► Only sections with PSD have beacons

► Driver has to push a button for a side

► Beacons have ID plugs

► Valid message received recently from beacon

► Software behaviour based on system-level
properties and not (only) on software defined
variables

v_ob_trainAlignedLeftSide
:= bool(v_ob_commEstablished = TRUE
 & v_ob_commRestrictive = FALSE
 & v_ob_communicatingAntenna :
{e_TSA2,e_TSA3})

► SIL3 system

► 8 platforms

► 150 safety computers installed onboard

► 8 safety computers installed on trackside

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 69/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Formal Methods in Action

Req
Human Assertions Proof Theorem prover Verif

C
Analyzer

Req Human B Proof Model checker Valid
Data

Translator

Interviews

model

Req Human B Proof Theorem prover Verif
ValidDesign

NL

Interviews

Req Human Event-B Proof Theorem prover Valid
ST Interviews

Req Human
B Proof

Ada, ASM, C

Theorem prover

Safety computerAda, ASM, C

Dev
Verif
ValidTrans.

Data
validation

System
Specs Proof

Smart card
certification

SW
verification

SW
Dev

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 70/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

Conclusion
► Why do we use formal methods ?

▷We are more efficient, more competitive, more flexible

▷ Enhance the safety demonstration (clarity, test vs proof even if we test)

▷ Help us to keep things under control

▷We find problems on existing systems / never implemented specs

► What perspective ?

▷ Problem not yet « solved »: incidents, accidents still happen

▷ FM requirement appears in call for tender

▷ Applied also in non-safety related domains (“do not lose the drone”)

▷ Room for improvement, contribution to SotA

▷ Human is central

▷ Universities should produce “Leonardos”

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

P. 71/76FM/FMICS I How to Model System Properties in a Software Formal Model
picto-linkedin.pdf website.pdf

Attribution 4.0 Unported (CC BY 4.0)

AIX

LYON

PARIS

STRASBOURG

WWW.CLEARSY.COM

THIERRY.LECOMTE@CLEARSY.COM

ABZ ULM

MAY2020

Thank you

for your attention
—

FM/FMICS

SEP2024

https://mooc.imd.ufrn.br/

Attribution 4.0 Unported (CC BY 4.0)

https://www.linkedin.com/company/clearsy/
https://www.clearsy.com/

	Section par défaut
	Diapositive 1
	Diapositive 2 Common Thread

	Safety
	Diapositive 3 SAFETY
	Diapositive 4 Failing Software-Based Systems
	Diapositive 5 Safety @ Railways
	Diapositive 6 Safety @ Railways
	Diapositive 7 Safety @ Railways @ CLEARSY
	Diapositive 8 Formal Methods to Handle Failing Systems

	B
	Diapositive 9 B for C&C not Threaded Safety Software
	Diapositive 10 Formal Software Development
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15 Software Formal Development
	Diapositive 16 Software Formal Development
	Diapositive 17 Software Formal Development
	Diapositive 18
	Diapositive 19 Software Formal Development
	Diapositive 20 B: what for ?
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24 REX & Summary

	CSP
	Diapositive 25 CLEARSY Safety Platform
	Diapositive 26 CSP or CSSP ?
	Diapositive 27 Safe Computing
	Diapositive 28 CLEARSY Safety Platform
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35 CLEARSY Safety Platform
	Diapositive 36 REX & Summary

	VDD
	Diapositive 37 Formal Data Validation
	Diapositive 38
	Diapositive 39 Formal Data Validation
	Diapositive 40 Interaction Reasoning / Validation
	Diapositive 41 Link with the Formal Data Validation
	Diapositive 42 Data Valid, step 1: formalization
	Diapositive 43 Data Valid, step 2: formal validation rule design
	Diapositive 44 Achievements
	Diapositive 45 Formal Data Validation: the proof !
	Diapositive 46

	Safety Reasoning
	Diapositive 47 Safety Reasoning
	Diapositive 48 Formal System Proof
	Diapositive 49 Achievements
	Diapositive 50 Summary
	Diapositive 51 Global Summary
	Diapositive 52 Question

	B+
	Diapositive 53 B+
	Diapositive 54 The Holy Grail
	Diapositive 55 Holy Grenade Specification
	Diapositive 56 Exercise
	Diapositive 57 Safety Property
	Diapositive 58 Safety Property
	Diapositive 59 Safety Property
	Diapositive 60 Specification
	Diapositive 61 Specification
	Diapositive 62 Refinement
	Diapositive 63 Refinement with deadline from CSP
	Diapositive 64 Cut MACHINE for Data Acquisition
	Diapositive 65 MACHINE for Catapulting
	Diapositive 66 Resulting Architecture
	Diapositive 67 What is missing ?
	Diapositive 68 Application to PSD Control in Brisbane (2024)

	Conclusion
	Diapositive 69 Formal Methods in Action
	Diapositive 70 Conclusion
	Diapositive 71

