
Type Checker
Error Message Manual

© 2023 by CLEARSY

Licensed under Attribution-NonCommercial-ShareAlike 4.0 International.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/.

Atelier B 4.7.1 Community Edition

http://creativecommons.org/licenses/by-nc-sa/4.0/

Type Checker — Error Message Manual

Contents

1 Introduction 9

2 Definitions 10

3 Warning Messages 11
3.1 Concrete constant <ident cst> has not been valued 11
3.2 Concrete constant <ident cst> is not an implementable array 11
3.3 Concrete constant <ident cst> may not be implementable 11
3.4 Constant <ident cst> may not be implementable is not an implementable record : it

uses a non implementable array . 12
3.5 Deferred set <ident set> has not been valued . 12
3.6 Identifier <ident> is already used . 12
3.7 Local variable <ident> may be read before being initialised 13
3.8 Local variable <ident> may not be initialised . 13
3.9 Local variables <list ident> may not be initialised 13
3.10 Output parameter <ident> may not be initialised 14
3.11 Output parameters <list ident> may not be initialised 14

4 Error Messages 16
4.1 $0 is not allowed: <ident>$0 . 16
4.2 Abstract and concrete headers of local operation <ident op> differ 16
4.3 Abstract and concrete headers of operation <ident op> differ 17
4.4 Abstract constant <ident cst> cannot be used in <ident mach> instanciation . . . 18
4.5 Abstract constant <ident> has not been typed . 18
4.6 Abstract constant <ident hcst> has not the same type in <ident comp1> and in

<ident comp2> . 19
4.7 Abstraction and refinement have the same name 19
4.8 Abstract set name should be an identifier, or invalid list separator 19
4.9 <exp> and have incompatible type in a CASE substitution 20
4.10 <ident op> and another operation of <ident mach> are called simultaneously . . . 20
4.11 A record element whithout label can not be used in <Expression> 21
4.12 Bound <ident> of <exp> should be an integer . 21
4.13 <ident> can not be typed by fg . 21

ATB-TCEM-CE-4.7.1 2/84

Type Checker — Error Message Manual

4.14 Component name <ident> is a keyword . 22
4.15 Component name <ident> should be an identifier 22
4.16 Concrete variable <ident> is implicitly implemented with a variable of <ident> which

has not the same type . 22
4.17 Constant <ident> has not been typed . 23
4.18 Constant <ident> is not an implementable array 23
4.19 Constants should be defined in the PROPERTIES clause 23
4.20 <ident> declaration is not visible . 23
4.21 Distinct definitions of enumerated set <ident set> 24
4.22 <ident> does not exist or is not a visible operation 24
4.23 Element <ident elt> of set <ident set> is already defined 24
4.24 Enumerated set name in definition <enum def> should be an identifier 25
4.25 <ident cst> has not the same type in <ident mach1> (or in an abstraction <ident

mach1>) and in <ident mach2> . 25
4.26 Identifier <ident> is a keyword . 25
4.27 Identifier <ident> is already defined . 26
4.28 Identifier <ident cst> is already valued . 26
4.29 Identifier <ident> is defined in <ident mach1> and in <ident mach2> 26
4.30 Identifier <ident> is defined in <ident mch1> and in an included renamed machine

of <ident mch2> . 27
4.31 Identifier <ident> is defined in <ident mch1> and in <ident mch2> (or in an ab-

straction of <ident mch2>) . 27
4.32 Identifier <ident> is defined in an included (possibly renamed) machine of <ident

mch1> and in an included (possibly renamed) machine of <ident mch2> 27
4.33 Identifier <ident> is defined in an included renamed machine of <ident mch1> and

in <ident mch2> . 28
4.34 Identifier <ident> is defined in <ident mch1> (or in <ident mch1>’s abstractions)

and in <ident mch2> . 28
4.35 in can not be typed by a record element without label 28
4.36 Incompatible types in <exp> . 28
4.37 <exp1> in <exp2> has not been typed . 29
4.38 <exp1> in <exp> should be a couple of sets . 29
4.39 <exp1> in <exp> should be a function . 29
4.40 <exp1> in <exp> should be a list of distinct identifiers 30
4.41 <exp1> in <exp> should be an expression . 30
4.42 <exp1> in <exp> should be an integer . 30
4.43 <exp1> in <exp> should be an integer set or an enumerated set 31
4.44 <exp1> in <exp> should be a relation . 31

ATB-TCEM-CE-4.7.1 3/84

Type Checker — Error Message Manual

4.45 <exp1> in <exp> should be a relation between a set and itself 31
4.46 <exp1> in <exp> should be a sequence of sequences 32
4.47 <exp1> in <exp> should be a set . 32
4.48 <exp1> in <exp> should be a set of sets of same type 33
4.49 Internal name clash between identifier <ident> and a renamed identifier of the ab-

straction of <ident mach> . 33
4.50 Invalid assignement for a record element in <Expression> 33
4.51 Invalid call of <ident op>: wrong number of input parameters 34
4.52 Invalid call of <ident op>: wrong number of output parameters 34
4.53 Invalid constant <expression> in a branch of CASE 34
4.54 Invalid extended machine <ident mach>, it uses other machines 35
4.55 Invalid formula in VALUES clause . 35
4.56 Invalid identifier or invalid list separator . 36
4.57 Invalid imported machine <ident mach>, it uses other machines 36
4.58 Invalid input format . 36
4.59 Invalid inputs in <op header> . 36
4.60 Invalid label <ident label> in <ident elem rec>’<ident label> 37
4.61 Invalid label <ident label> in a record expression 37
4.62 Invalid list of identifiers in enumerated set definition <enum def> 37
4.63 Invalid number of arguments for <subst> . 38
4.64 Invalid operation call for assignment . 38
4.65 Invalid operation call for <ident> assignment in <exp> 38
4.66 Invalid output parameter <exp> . 38
4.67 Invalid output parameters in <op header> . 39
4.68 Invalid predicate <pred> . 39
4.69 Invalid seen machine <ident mach>, it uses other machines 39
4.70 Invalid sequence in <exp> . 39
4.71 Invalid substitution <subst> . 40
4.72 Invalid syntax for substitution CASE <subst> . 40
4.73 Invalid syntax for substitution IF <subst> . 41
4.74 Invalid syntax for substitution SELECT <subst> 41
4.75 Invalid syntax in operation definition <op> . 41
4.76 Invalid type for <ident> ; <Expression> contains a record element without label . . 42
4.77 Invalid use of a record element without label . 42
4.78 Invalid valuation of <ident const> . 42
4.79 <ident mach> is not a machine . 43
4.80 <ident> is not an identifier . 43
4.81 Left hand side and right hand side of <exp> have incompatible type 43

ATB-TCEM-CE-4.7.1 4/84

Type Checker — Error Message Manual

4.82 Left hand side in valuation <val> should be an identifier 44
4.83 Left hand side of comparison <exp> has not been typed 44
4.84 Left hand side of comparison <exp> should be an integer 45
4.85 Left hand side of <exp> has not been typed . 45
4.86 Left hand side of <exp> should be an integer . 46
4.87 Left hand side of <exp> should be a relation . 46
4.88 Left hand side of <exp> should be a sequence . 46
4.89 Left hand side of <exp> should be a set . 47
4.90 Local operation <ident op> has not been implemented 47
4.91 Local variable <ident> is read before being initialised 47
4.92 Machine <ident mach> can not be refined, it uses other machines 48
4.93 Machine <ident mach1> should be included in <ident mach2> : it has been included

in the abstraction of <ident mach2> . 48
4.94 Machine <ident mach1> should be seen by <ident mach2> 49
4.95 Machine <ident mach1> should be seen by <ident mach2> (it is seen by <ident

mach3>) . 49
4.96 Machine <ident mach> should have parameters 50
4.97 Machine <ident mach1> uses <ident mach2> which is neither included nor extended 50
4.98 Missing symbol => in predicate <pred> . 50
4.99 Multiple assignment of <ident var> in parallel substitutions 50
4.100Multiple assignment of <ident> when calling local operation <ident op> 51
4.101Multiple definition of identifier <ident> (because of the INCLUDES clause transitivity

used for <ident mch1>) . 52
4.102Multiple definition of identifier in . 52
4.103Multiple promotion of operation <ident op> . 52
4.104Multiple reference of machine <ident mach> . 52
4.105Multiple use of constant <ident cst> in branches of CASE 53
4.106Multiple use of identifier <ident> in branches of CASE 53
4.107Multiple use of label <ident label> in a record expression 53
4.108Object <ident> cannot be valued . 54
4.109<ident op> of machine <ident mch> is called simultaneously with a modification of

variable <ident var> . 54
4.110Only one ABSTRACT CONSTANTS clause is allowed 54
4.111Only one ABSTRACT VARIABLES clause is allowed 55
4.112Only one ASSERTIONS clause is allowed . 55
4.113Only one component can be refined: <ident mach> is chosen for the TypeCheck

continuation . 56
4.114Only one CONCRETE CONSTANTS clause is allowed 56

ATB-TCEM-CE-4.7.1 5/84

Type Checker — Error Message Manual

4.115Only one CONCRETE VARIABLES clause is allowed 56
4.116Only one CONSTANTS clause is allowed . 57
4.117Only one CONSTRAINTS clause is allowed . 57
4.118Only one EXTENDS clause is allowed . 57
4.119Only one ABSTRACT CONSTANTS clause is allowed 58
4.120Only one ABSTRACT VARIABLES clause is allowed 58
4.121Only one IMPORTS clause is allowed . 58
4.122Only one INCLUDES clause is allowed . 59
4.123Only one INITIALISATION clause is allowed . 59
4.124Only one INVARIANT clause is allowed . 59
4.125Only one LOCAL OPERATIONS clause is allowed 60
4.126Only one OPERATIONS clause is allowed . 60
4.127Only one PROMOTES clause is allowed . 60
4.128Only one PROPERTIES clause is allowed . 61
4.129Only one REFINES clause is allowed . 61
4.130Only one SEES clause is allowed . 61
4.131Only one SETS clause is allowed . 61
4.132Only one USES clause is allowed . 62
4.133Only one VALUES clause is allowed . 62
4.134Operation <ident op> does not exist in <mach> 62
4.135Operation <ident op> does not exist in abstraction 63
4.136Operation <ident op> has not been implemented 63
4.137Operation name <ident op> in <op header> is a keyword 63
4.138Operation name <ident op> in <op header> should be an identifier 64
4.139Output parameter <ident> has not been initialised 64
4.140Output parameters <list ident> have not been initialised 64
4.141Parameter <ident> has not been typed . 65
4.142Parameter <ident> of <ident op> is already defined in <ident mach> 65
4.143Parameters of abstraction <ident mch1> and refinement <ident mch2> differ . . . 65
4.144Prefix <ident1> in <ident1>.<ident2> is a keyword 66
4.145Prefix in <ident> should be an identifier . 66
4.146Prefix <ident> is used twice . 66
4.147<exp> ran(<exp>) should be a set of sets . 66
4.148Read only or unknown left hand side <ident> . 67
4.149Refined component <ident> cannot be renamed 67
4.150Right hand side of comparison <exp> has not been typed 67
4.151Right hand side of comparison <exp> should be an integer 68
4.152Right hand side of <exp> has not been typed . 68

ATB-TCEM-CE-4.7.1 6/84

Type Checker — Error Message Manual

4.153Right hand side of <exp> should be an integer . 69
4.154Right hand side of <exp> should be a relation . 69
4.155Right hand side of <exp> should be a sequence 69
4.156Right hand side of <exp> should be a set . 70
4.157Seen machine <ident mach> cannot be instanciated 70
4.158Sequence in <exp> should not be empty . 70
4.159Sequencing substitution is forbidden in a local operation specifications : <subst> . . 71
4.160Sequencing substitution is forbidden in a machine: <subst> 71
4.161Set <ident set> is already defined . 72
4.162The ABSTRACT CONSTANTS clause is not allowed in an implementation 72
4.163The ABSTRACT VARIABLES clause is not allowed in an implementation 72
4.164The component <ident mach> cannot be referenced by itself 72
4.165The CONSTRAINTS clause is only allowed in a machine 73
4.166The ABSTRACT CONSTANTS clause is not allowed in an implementation 73
4.167The ABSTRACT VARIABLES clause is not allowed in an implementation 73
4.168The implementation <ident mach> cannot be refined 74
4.169The IMPORTS clause is only allowed in an implementation 74
4.170The INCLUDES clause is not allowed in an implementation 74
4.171The LOCAL OPERATIONS clause is only allowed in an implementation 74
4.172The refined machine <ident mach> cannot be required 75
4.173The REFINES clause is not allowed in a machine 75
4.174The REFINES clause missing . 75
4.175The USES clause is only allowed in a machine . 75
4.176The VALUES clause is only allowed in an implementation 76
4.177The VARIABLES clause is not allowed in an implementation 76
4.178Unknown renamed identifier: <ident1>.<ident2> 76
4.179Used machine <ident mach> cannot be instanciated 77
4.180Use of non implementable arrays in <exp> . 77
4.181Variable <ident var> has not been typed . 77
4.182Variable <ident> is not an implementable array 78
4.183Variable <ident> should be initialised . 78
4.184Variant <exp> should designate a natural . 78
4.185VAR substitution is forbidden in a local operation specification : <subst> 79
4.186VAR substitution is forbidden in a machine: <subst> 79
4.187WHILE substitution is forbidden in a local operation specification : <subst> 79
4.188WHILE substitution is only allowed in an implementation: <subst> 80
4.189Wrong number of parameters for instanciated machine <ident mach> 81
4.190Wrong type for actual input parameters of called operation <ident op> 81

ATB-TCEM-CE-4.7.1 7/84

Type Checker — Error Message Manual

4.191Wrong type for actual output parameters of called operation <ident op> 81
4.192Wrong type for actual parameter <ident param> of machine <ident mach> 82
4.193Wrong type for expression <exp> in a CASE substitution 82

5 Internal Error Messages 84
5.1 Bad magic number for <ident mach>.nf . 84
5.2 Cannot load information file of component <ident mach> 84
5.3 Wrong Normal Form format for the refined structure. 84

ATB-TCEM-CE-4.7.1 8/84

Type Checker — Error Message Manual

1 Introduction

In this manual, different error and warning messages originating from the Type Checker are presented.
The goal is to define the origin of errors for each message so as to help the user : once the source of
error has been correctly located, it is much easier to correct one’s specification. For more complex
and detailled information, please refer to the B Language Reference Manual. The messages from the
Type Checker are all flanked by :

1 Type Checking <machine/refinement/implementation > <comp_name >
2 ...
3 End of Type checking

For each effective control, an information message is posted . For example :

1 Checking operation Read

informs the user that the Type Checker is verifying the Read operation. The error or warning messages
which will follow, will refer to the Read operation. However, they will specify the extract from the
source code where the error has been localised. In fact, the expressions A <: B et A <<: B are
normalised in A : POW(B). If there are any associated messages they will quote the normalised
expression.

This manual is made up of four chapters. The first one defines the terms used in the message
explanations. The following three chapters present, in order, the warning, error, and internal error
messages. The messages are classified according to alphabetical order. Symbols, apart from figures,
are not included in the classification. So, the message :

1 <exp> and <ident> have incompatible type in a CASE substitution

is classified under the A letter. It therefore comes before the message :

1 Bound <ident> of <exp> should be an integer

Each message, classified either as warning or error, is presented as follows:

— wording of the message,
— description of the error made,
— example of a B model (or several models) generating the message.

ATB-TCEM-CE-4.7.1 9/84

Type Checker — Error Message Manual

2 Definitions

This chapter defines certain terms used henceforth in the manual.

constant denotes indifferently an abstract or concrete constant .

component denotes indifferently a machine, a refinement or an implementation.

B identifier is a chain of characters verifying the following rules:

— at least two characters,
— begin with a letter,
— composed solely of letters (A-Z, a-z), digits (0-9) and underscore (_).

keyword is an identifier with a particular meaning. The list of keywords in the B Language is
presented in the B Language Reference Manual.

It is necessary to complete it with the following list which is the list of identifiers
reserved for the proof tools:
ARI, CATL, DED, DEF, END, FLAT, FORWARD, FORWARDTHEORIES, GEN, HYP,
IS, LMAP, MAP, MODR, NEWV, NORMAL, NORMALTHEORIES, PROOFLEVEL,
PROOFMETHOD, RES, REV, RULE, SET, SHELL, SPESPE, SUB, THEORY, THE-
ORIES, WRITE, bUpident, band, bappend, bcall, bcall1, bcall2, bcatl, bclean, bclose,
bcompile, bconnect, bcrel, bcrelr, bcrer, bctrule, bdef1, bdef2, bdump, berv, bfalse,
bfwd, bget, bgethyp, bgetresult, bgoal, bguard, bhalt, bident, binhyp, blemma, blen,
blenf, blent, blident, bload, blvar, bmark, bmatch, bmodr, bnewv, bnlmap, bnmap,
bnot, bnum, bpattern, bpop, bprintf, bproved, breade, breadf, brecompact, breset-
comp, bresult, brev, brule, bsearch, bsetmode, bshell, bslmap, bsmap, bsparemem,
bsrv, bstatistics, bstring, bsubfrm, btest, bunproved, bvrb, bwritef, bwritem, trace.

typing predicate is a predicate of the form “Expression op Identifier” where op is either belonging (:),
or inclusion (< or <:), or equality (=). These predicates are described in details in the B Language
Reference Manual.

variable denotes an abstract or concrete variable.

ATB-TCEM-CE-4.7.1 10/84

Type Checker — Error Message Manual

3 Warning Messages

Warning messages from the Type Checker are preceeded by Warning.
They allow the user to anticipate a future error message from the B0 Checker. They can also indicate
potential problems concerning code readability.

3.1 Concrete constant <ident cst> has not been valued

All of the concrete constants defined during refinement must be valued in the implementation’s
VALUES clause. This warning anticipates an error message from the B0 Checker.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 CONCRETE_CONSTANTS
4 cc
5 PROPERTIES
6 cc : INTEGER --> BOOL
7 END /* cc is not valued */

3.2 Concrete constant <ident cst> is not an implementable array

The concrete constant <ident cst> is not implementable in B0: its domain must be an interval or
an enumerated set.

1 MACHINE M1
2 CONSTANTS
3 Sequence , Relation
4 SETS
5 EE
6 PROPERTIES
7 Sequence : seq(EE) &
8 Relation : INT <-> INT
9 /* Sequence and Relation are not implementable */
10 END

3.3 Concrete constant <ident cst> may not be implementable

The Type Checker is not yet able to determine whether the constant <ident cst> is implementable.
This warning may appear after an error in the type calculation. In this case, other messages will
detail the problem.

1 MACHINE M1
2 CONSTANTS

ATB-TCEM-CE-4.7.1 11/84

Type Checker — Error Message Manual

3 c1
4 PROPERTIES
5 c1 = FctUnknown(1)
6 END

3.4 Constant <ident cst> may not be implementable is not an implementable
record : it uses a non implementable array

Concrete constant <ident cst> may not be implementable in B0: one of its fields is a non imple-
mentable array (its domain should be an interval or an enumerated set).

1 MACHINE M1
2 CONSTANTS
3 Record1, Record2
4 SETS
5 EE
6 PROPERTIES
7 Record1 : struct(seq1 : seq(EE), bb ; BOOL) &
8 Record2 : struct(rel1 : INT <-> INT, xx : INT)
9 /* Record1 and Record2 are not implementable. */
10 END

3.5 Deferred set <ident set> has not been valued

All of the abstract sets defined during refinement must be valued in the implementation’s VALUES
clause. This warning anticipates an error message from the B0 Checker.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 SETS SS
4 END /* SS is not valued */

3.6 Identifier <ident> is already used

The identifier <ident> is used more than once in the analyzed component. These two definitions do
not risk a conflict and the specification is correct. This warning simply highlights a potential problem
in the understanding of sources when read.

1 REFINEMENT M1_1
2 REFINES M1
3 OPERATIONS
4 op =
5 VAR vv IN
6 vv : (vv : NAT & !vv.(vv : BOOL => 0 = 0))

ATB-TCEM-CE-4.7.1 12/84

Type Checker — Error Message Manual

7 /* the second vv does not conflict with the first one but
8 may interfere with the understanding of the operation */
9 END
10 END

3.7 Local variable <ident> may be read before being initialised

This message is generated for a machine or a refinement. Local variable <ident> is a variable defined
in a VAR substitution or in the list of output parameters for an operation. It was used while not
completely initialised by a branch substitution.

1 MACHINE M1
2 OPERATIONS
3 ss, tt <-- op(ii) =
4 PRE
5 ii : NAT
6 THEN
7 IF ii > 1 THEN
8 ss := 2
9 END;
10 tt := ss
11 /* ss was not initialised in all branches of the IF condition */
12 END
13 END

3.8 Local variable <ident> may not be initialised

Local variable <ident>, defined in a VAR substitution, is not properly initialised or is initialised in
only some paths of a branch substitution.

1 REFINEMENT M1_1
2 OPERATIONS
3 op = VAR vv IN skip END
4 END

3.9 Local variables <list ident> may not be initialised

Local variables <list ident>> defined in a VAR substitution, are not properly initialised or are
initialised in only some paths of a branch substitution.

1 REFINEMENT M1_1
2 OPERATIONS
3 op(ii) =
4 PRE

ATB-TCEM-CE-4.7.1 13/84

Type Checker — Error Message Manual

5 ii : NAT
6 THEN
7 VAR vv, ww IN
8 IF ii = 1 THEN
9 vv := 2
10 END
11 END
12 END
13 END

3.10 Output parameter <ident> may not be initialised

This message is generated for a machine or a refinement. The output parameter <ident> from the
operation being type checked was not initialised in all of the branches of the branch substitutions
used in the body of this operation.

1 MACHINE M1
2 OPERATIONS
3 ss <-- op(ii) =
4 PRE
5 ii : NAT
6 THEN
7 IF ii > 1 THEN
8 ss := 2
9 END
10 END
11 END
12 /* ss was not initialised in all of the branches of the IF condition */

3.11 Output parameters <list ident> may not be initialised

This message is generated for a machine or a refinement. The <list ident> output parameters from
the operation being type checked were not initialised in all branches of the branch substitutions in
the body of this operation.

1 MACHINE M1
2 OPERATIONS
3 ss, tt <-- op(ii) =
4 PRE
5 ii : NAT
6 THEN
7 IF ii > 1 THEN
8 ss := 2
9 ELSE
10 tt := 3
11 END

ATB-TCEM-CE-4.7.1 14/84

Type Checker — Error Message Manual

12 END
13 END
14 /* ss and tt were not typed in all branches of the IF condition */

ATB-TCEM-CE-4.7.1 15/84

Type Checker — Error Message Manual

4 Error Messages

Error messages from the Type Checker are preceeded by Error.
As far as possible, the Type Checker does not stop after an error. If, however, it finds it impossible to
continue, the following final message indicates that the verification has been interrupted : TypeCheck
aborted

4.1 $0 is not allowed: <ident>$0

Expression $0 is only allowed in the “becomes such as” and “WHILE” substitutions. This message
is thrown in all other cases.

1 MACHINE M1
2 CONCRETE_VARIABLES
3 vv
4 INVARIANT
5 vv : NAT
6 INITIALISATION
7 vv := 1
8 OPERATIONS
9 op = vv := vv$0
10 END

4.2 Abstract and concrete headers of local operation <ident op> differ

Headers of implementation of local operations must be strictly identical to the headers of their
abstraction: the number of input and output parameters must be retained, the parameter names
must be the same.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 CONCRETE_VARIABLES
4 v1
5 INVARIANT
6 v1:NAT
7 INITIALISATION
8 v1:=0
9 LOCAL_OPERATIONS
10 oper1 =
11 skip;
12 oper2(xx) = PRE
13 xx:NAT
14 THEN
15 v1:=xx
16 END;

ATB-TCEM-CE-4.7.1 16/84

Type Checker — Error Message Manual

17 res <-- oper3 =
18 res := v1;
19 res <-- oper4(xx) = PRE
20 xx:NAT
21 THEN
22 res:=xx+v1
23 END
24 OPERATIONS
25 oper1(xx) = skip
26 /*xx is too many*/;
27 out <-- oper2 = BEGIN
28 /*out is too many, xx is missing */
29 out:=0
30 END;
31 out <-- oper3 = BEGIN
32 /*out instead of res*/
33 out := v1
34 oper4 = skip
35 /* res and xx are missing*/
36 END

4.3 Abstract and concrete headers of operation <ident op> differ

In a refinement or an implementation, the headers of refined operations must be strictly identical to
the abstract machine headers: the number of input and output parameters must be retained, the
parameter names must be the same. In the same way, when refining an operation with a promoted
operation, the headers must be identical.

1 MACHINE M1 IMPLEMENTATION M1_I
2 VARIABLES REFINES M1
3 v1
4 INVARIANT IMPORTS M2
5 v1:NAT
6 INITIALISATION PROMOTES opincluded
7 v1:=0
8 OPERATIONS OPERATIONS
9 oper1 = oper1(xx) = skip;
10 skip; /* xx is surplus parameter */
11 oper2(xx) = PRE out <-- oper2 = BEGIN
12 xx:NAT /* out is surplus parameter , xx

missing */
13 THEN out := 0
14 v1:=xx END;
15 END; out <-- oper3 = skip;
16 res <-- oper3 = /* out in place of res */
17 res := v1; oper4 = skip
18 res <-- oper4(xx) = PRE /* res and xx lac missing */
19 xx:NAT

ATB-TCEM-CE-4.7.1 17/84

Type Checker — Error Message Manual

20 THEN
21 res:=xx+v1
22 END;
23 out <-- opincluse(in) = PRE
24 in:NAT
25 THEN
26 out:=in+1
27 END;
28 END
29
30 MACHINE M2
31 OPERATIONS
32 res <-- opincluded(xx) =
33 /* res and xx in place of out and in */
34 PRE xx:NAT THEN res:=xx+1 END
35 END

4.4 Abstract constant <ident cst> cannot be used in <ident mach>
instanciation

The abstract constants of a machine or a refinement M cannot be used in the instanciation of the
machines referenced in the INCLUDES and EXTENDS clauses in M.

1 MACHINE M1
2 ABSTRACT_CONSTANTS
3 cc
4 PROPERTIES
5 cc : POW(NAT) * POW(NAT)
6 INCLUDES
7 M2(cc)
8 END

4.5 Abstract constant <ident> has not been typed

All abstract constants must be typed in the PROPERTIES clause using a typing predicate (refer to
the definition in Chapter 1).

1 MACHINE MACH_CONST
2 ABSTRACT_CONSTANTS
3 valmax,
4 valmin,
5 valmed
6 PROPERTIES
7 valmax = 100 &
8 valmin < valmax /* This does not type valmin. Typing has to be

explicit. */

ATB-TCEM-CE-4.7.1 18/84

Type Checker — Error Message Manual

9 END /* valmed not typed */

4.6 Abstract constant <ident hcst> has not the same type in <ident comp1>
and in <ident comp2>

<ident comp1> designates the component refined by the analyzed component. <ident comp2>
designates a machine which is directly requested by the analyzed component. The abstract constant
<ident hcst> of <ident comp1> can not be implemented by an abstract or concrete homonym
constants which have a different type in <ident comp2>.

1 MACHINE M1 MACHINE other
2 ABSTRACT_CONSTANTS ABSTRACT_CONSTANTS
3 cc cc
4 PROPERTIES PROPERTIES
5 cc: NAT cc: BOOL
6 /* replace cc: NAT with cc: BOOL */ END
7 END
8
9 IMPLEMENTATION M1_i
10 REFINES M1
11 IMPORTS other
12 END

4.7 Abstraction and refinement have the same name

The names of components in a vertical development must all be distinct. In general, the nth
refinement of machine M1 is named M1_n.

1 REFINEMENT REFINEMENT
2 MACH /* illegal */ MACH_1 /* write recommended */
3 REFINES REFINES
4 MACH MACH
5 END END

4.8 Abstract set name should be an identifier, or invalid list separator

A set name must be a B language identifier (refer to the definition in Chapter 1). Each set definition
must be separated by a semi colon.

1 MACHINE M1
2 SETS
3 2; "string"; combined name
4 END

ATB-TCEM-CE-4.7.1 19/84

Type Checker — Error Message Manual

4.9 <exp> and have incompatible type in a CASE substitution

Discriminant <exp> of a CASE substitution and branch selector <identgt; should have the same
type.

1 MACHINE M1
2 SETS
3 EE = {c1, c2}
4 VARIABLES
5 vv
6 INVARIANT
7 vv : NAT
8 INITIALISATION
9 vv :: NAT
10 OPERATIONS
11 op =
12 CASE vv OF
13 EITHER c1 THEN skip
14 OR TRUE THEN skip
15 ELSE skip
16 END
17 END
18 /* c1 and TRUE do not have the same type as vv */
19 END

4.10 <ident op> and another operation of <ident mach> are called
simultaneously

Two included operations cannot be called in parallel.

1 MACHINE M1 MACHINE M0
2 VARIABLES INCLUDES M1
3 v1,v2 OPERATIONS
4 INVARIANT op_error = PRE
5 v1:NAT & v2:NAT & v1<=v2 v1 < v2
6 INITIALISATION THEN
7 v1:=0 || v2:=0 increment || decrement
8 OPERATIONS /* the invariant is lost */
9 increment = PRE END
10 v1<v2-1 END
11 THEN
12 v1:=v1+1
13 END
14 ;
15 decrement = PRE
16 v1<v2
17 THEN
18 v2:=v2-1

ATB-TCEM-CE-4.7.1 20/84

Type Checker — Error Message Manual

19 END
20 END

4.11 A record element whithout label can not be used in <Expression>

Two record elements whithout label can not be compared. This is because a record element without
label has a generic type.

1 MACHINE M1
2 ABSTRACT_VARIABLES
3 xx,yy
4 INVARIANT
5 xx : NAT &
6 yy : BOOL &
7 rec(xx,yy) = rec(2,TRUE)
8 /* The expression rec(xx,yy) = rec(2,TRUE) is not correct */
9 /* xx = 2 & yy = TRUE is correct */
10 INITIALISATION
11 xx := 2 ||
12 yy := TRUE
13 END

4.12 Bound <ident> of <exp> should be an integer

The two boundaries of an interval should be integers.

1 MACHINE M1
2 CONSTANTS
3 cc, dd
4 PROPERTIES
5 cc = TRUE..7 & /* TRUE is not an integer */
6 dd = 2..Binconnue /* Binconnue is not an integer */
7 END

4.13 <ident> can not be typed by fg

This message is sent when the identifier <ident> is typed by the empty set.

1 MACHINE test
2 ABSTRACT_VARIABLES
3 vv
4 INVARIANT
5 vv = {} /* vv has not been typed. For example, you must write
6 vv <: NAT & vv = {} */
7 INITIALISATION

ATB-TCEM-CE-4.7.1 21/84

Type Checker — Error Message Manual

8 vv := {}
9 END

4.14 Component name <ident> is a keyword

The <ident> identifier is a reserved language component (refer to Chapter 1). It is illegal to use it
to name a component.

1 MACHINE MAXINT
2 END

4.15 Component name <ident> should be an identifier

A component name must be a simple name, i.e. a correct B language identifier (refer to the definition
in Chapter 1).

1 MACHINE M1.N2
2 /*The machine name below is incorrect as it contains a dot.*/
3 END

4.16 Concrete variable <ident> is implicitly implemented with a variable of
<ident> which has not the same type

In an implementation, a concrete variable may be implicitly implemented with a variable of the same
name taken from an imported machine. In the case of this message, the variable to implement and
the one which is imported do not have the same type, which is illegal.

1 MACHINE M1 MACHINE M0
2 CONCRETE_VARIABLES CONCRETE_VARIABLES
3 vv vv
4 INVARIANT INVARIANT
5 vv : NAT vv : BOOL
6 INITIALISATION INTIALISATION
7 vv := 1 vv := TRUE
8 END END
9
10 IMPLEMENTATION M1_1
11 REFINES M1
12 IMPORTS
13 M0
14 END

ATB-TCEM-CE-4.7.1 22/84

Type Checker — Error Message Manual

4.17 Constant <ident> has not been typed

All constants must be typed in the PROPERTIES clause using a typing predicate (refer to the
definition in Chapter 1).

1 MACHINE MACH_CONST
2 CONSTANTS
3 valmax,
4 valmin,
5 valmed
6 PROPERTIES
7 valmax = 100 &
8 valmin < valmax /* This does not type valmin */
9 END /* valmed not typed */

4.18 Constant <ident> is not an implementable array

This message is generated for an implementation. An array is not implementable in B0 if its array is
not an interval or an enumerated set.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 VISIBLE_CONSTANTS
4 cc
5 PROPERTIES
6 cc : INTEGER --> BOOL
7 VALUES
8 cc = INTEGER * {TRUE}
9 /* INTEGER is not bounded */
10 END

4.19 Constants should be defined in the PROPERTIES clause

The component analyzed is not the PROPERTIES clause although it contains con- stants.

1 MACHINE MACH_CONST
2 CONSTANTS
3 valmin, valmax
4 END /* the PROPERTIES clause is missing */

4.20 <ident> declaration is not visible

The analyzed component refers to an object called <ident> that does not belong to the set of visible
objects. This situation occurs after a data entry error or when the visibility constraints are violated.

ATB-TCEM-CE-4.7.1 23/84

Type Checker — Error Message Manual

1 MACHINE M1
2 OPERATIONS
3 vv <-- op = vv := UnknownId
4 /* UnknownId is not a visible identifier */
5 END

4.21 Distinct definitions of enumerated set <ident set>

In implementation, a given listed set may be defined in one of the refined components (or in the
implementation) and in a machine that is seen or imported. However, the two definitions must be
identical: same number of elements, same name for each element, same order of the elements.

1 MACHINE M1 MACHINE M2
2 SETS SETS
3 Enum1 = {bb}; Enum1 = {aa};
4 Enum2 = {E2a, E2b} Enum2 = {E2b, E2a}
5 END END
6
7 IMPLEMENTATION M1_1
8 REFINES M1
9 SEES M2
10 /* Enum1 and Enum2 do not have the same definition in M1 and M2 */
11 END

4.22 <ident> does not exist or is not a visible operation

The operation called <ident> does not belong to the set of visible operations. This situation occurs
after an entry error or when visibility constraints are not met.

1 /*The unknown operation in the following
2 machine does not belong to the included
3 machine, therefore it is not possible to
4 promote it:*/
5 MACHINE M1 MACHINE M2
6 INCLUDES M2 END
7 PROMOTES unknown
8 END

4.23 Element <ident elt> of set <ident set> is already defined

This is an identifier conflict.

1 MACHINE MACH
2 SETS

ATB-TCEM-CE-4.7.1 24/84

Type Checker — Error Message Manual

3 COLOURS = { red, green, blue }
4 ; GREEN = { green } /* green is in conflict */
5 END

4.24 Enumerated set name in definition <enum def> should be an identifier

A set name must be a B language identifier (refer to the definition in Chapter 1).

1 MACHINE M1
2 SETS
3 2 = {aa};
4 "string" = {bb};
5 combined name = {cc}
6 END

4.25 <ident cst> has not the same type in <ident mach1> (or in an abstraction
<ident mach1>) and in <ident mach2>

The <ident cst> constant is implicitly valued by a constant with the same name belonging to a seen
or imported machine. <ident cst> type is defined in the PROPERTIES clause of the abstraction of
the analyzed component and the one which is defined in the seen or imported machine must therefore
be identical.

1 MACHINE M1 MACHINE M2
2 CONSTANTS CONSTANTS
3 cst cst
4 PROPERTIES PROPERTTIES
5 cst : NAT cst : BOOL
6 END END
7
8 IMPLEMENTATION M1_1
9 REFINES M1
10 SEES M2 /* implicit valuation of cst */
11 END

4.26 Identifier <ident> is a keyword

Identifier <ident> is a language keyword (refer to Chapter 1). It cannot be used to name another
entity.

1 MACHINE MACH(skip)
2 END

ATB-TCEM-CE-4.7.1 25/84

Type Checker — Error Message Manual

4.27 Identifier <ident> is already defined

This message reminds the user of the presence of an identifier conflict when analyzing a specific
clause.

1 MACHINE MACH MACHINE SEE01
2 SEES SEE01 CONSTANTS
3 CONSTANTS cst1
4 cst1 PROPERTIES
5 /*conflict with SEE01*/ cst1 : NAT
6 PROPERTIES END
7 cst1 : NAT
8 END

4.28 Identifier <ident cst> is already valued

A constant or a set of the analyzed component is valued twice, which is illegal.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 VALUES
4 val1 = 2 ;
5 val1 = 2 /*val1 is valued twice*/
6 END

4.29 Identifier <ident> is defined in <ident mach1> and in <ident mach2>

This message indicates an identifier conflict between two machines covered by a visibility clause. The
use of a renaming prefix may resolve this conflict.

1 MACHINE INC01 MACHINE INC02
2 VARIABLES VARIABLES
3 v_conflict /*conflict*/ v_conflict /*conflict*/
4 INVARIANT INVARIANT
5 v_conflict : NAT v_conflict : BOOL
6 INITIALISATION INITIALISATION
7 v_conflict := 0 v_conflict := FALSE
8 END END
9
10 MACHINE GLOBAL
11 INCLUDES INC01, INC02
12 /* a correct write includes: INCLUDES i1.INC01, i2.INC02 */
13 END

ATB-TCEM-CE-4.7.1 26/84

Type Checker — Error Message Manual

4.30 Identifier <ident> is defined in <ident mch1> and in an included renamed
machine of <ident mch2>

This message indicates an identifier conflict between two machines covered by a visibility clause. The
use of a renaming prefix may resolve this conflict.

4.31 Identifier <ident> is defined in <ident mch1> and in <ident mch2> (or in
an abstraction of <ident mch2>)

This message indicates an identifier conflict between two machines covered by a visibility clause. The
use of a renaming prefix may resolve this conflict.

1 MACHINE MACH MACHINE INC01
2 INCLUDES INC01 VARIABLES
3 END v_conflict /*conflict*/
4 INVARIANT
5 v_conflict : NAT
6 INITIALISATION
7 v_conflict := 0
8 END
9
10 REFINEMENT MACH_1 REFINEMENT MACH_2
11 REFINES MACH REFINES MACH_1
12 END CONCRETE_CONSTANTS
13 v_conflict /* conflict */
14 INVARIANT
15 v_conflict : BOOL
16 INITIALISATION
17 v_conflict := FALSE
18 /* v_conflict in INC01 is still
19 visible, hence the conflict*/
20 END

4.32 Identifier <ident> is defined in an included (possibly renamed) machine of
<ident mch1> and in an included (possibly renamed) machine of <ident
mch2>

This message indicates an identifier conflict between two machines covered by a visibility clause. The
use of a renaming prefix may resolve this conflict.

ATB-TCEM-CE-4.7.1 27/84

Type Checker — Error Message Manual

4.33 Identifier <ident> is defined in an included renamed machine of <ident
mch1> and in <ident mch2>

This message indicates an identifier conflict between two machines covered by a visibility clause. The
use of a renaming prefix may resolve this conflict.

4.34 Identifier <ident> is defined in <ident mch1> (or in <ident mch1>’s
abstractions) and in <ident mch2>

This message indicates an identifier conflict between two machines covered by a visibility clause. The
use of a renaming prefix may resolve this conflict.

4.35 in can not be typed by a record element without label

This message is produced when one tries to type a data with a record value where some labels where
omitted.

1 MACHINE Mach
2 CONSTANTS cc
3 PROPERTIES
4 cc = rec(1, TRUE)
5 /* correct version : cc = rec(l1 : 1, l2 : TRUE) */
6 END

4.36 Incompatible types in <exp>

The syntax of <exp> implies certain conditions for the types. This message indicates a violation of
these conditions. For example, in expression ff(xx), xx must belong to the starting domain of ff. In
the same way, in substitution vv := faa, bb, ccg, the three elements aa, bb and cc must have the
same type.

1 MACHINE M1
2 SETS
3 SS; TT
4 CONSTANTS
5 relation , ff
6 PROPERTIES
7 relation : SS <-> TT &
8 ff : INT --> SS
9 OPERATIONS
10 vv <-- op1 = vv := relation[{1}];
11 /* 1 does not belong to SS */
12 vv <-- op2 = vv := [1, 2, TRUE, 6];

ATB-TCEM-CE-4.7.1 28/84

Type Checker — Error Message Manual

13 /* TRUE is not the same type as 6 */
14 vv <-- op3 = vv := {1, TRUE, 2};
15 /* TRUE is not the same type as 2 */
16 vv <-- op4 = vv := ff(TRUE)
17 /* TRUE is not an integer */
18 END

4.37 <exp1> in <exp2> has not been typed

Expression <exp1> contains one or more identifiers that were not typed prior to use in <exp2>.

1 MACHINE M1
2 CONSTANTS
3 ff, xx
4 PROPERTIES
5 ff : NAT --> NAT &
6 ff(xx) = 5
7 END

4.38 <exp1> in <exp> should be a couple of sets

The operator used in <exp> expects as an argument a couple of sets.

1 MACHINE M1
2 SETS
3 EE
4 CONSTANTS
5 cc, dd
6 PROPERTIES
7 cc = prj1(EE) & /* EE is not a couple of sets */
8 dd = prj2(Unknown) /* Unknown is not a couple of sets */
9 END

4.39 <exp1> in <exp> should be a function

In an expression in the form f(x), f must have been defined as a function.

1 MACHINE M1
2 CONSTANTS
3 c1, c2
4 PROPERTIES
5 c1 = TRUE(1) & /* TRUE is not a function */
6 c2 = Unknown(1) /* Unknown is not a function */
7 END

ATB-TCEM-CE-4.7.1 29/84

Type Checker — Error Message Manual

4.40 <exp1> in <exp> should be a list of distinct identifiers

<exp1> must be a list of B language identifiers, distinct from each other and separated by commas.
The definition of a B language identifier is provided in Chapter 1.

1 MACHINE M1
2 CONSTANTS
3 cc
4 PROPERTIES
5 !(xx, xx). (cc = xx) &
6 /*xx appears twice */
7 cc = PI(xx; yy).(xx : NAT & yy : NAT | 1) &
8 /*use ';' in place of ',' */
9 cc = SIGMA(xx, _1).(xx : NAT | 1) &
10 /* _1 is not an identifier */
11 cc = UNION(xx, 1).(xx : NAT | {xx})
12 /* 1 is not an identifier */
13 END

4.41 <exp1> in <exp> should be an expression

This message is generated for a lambda expression: in the notation %L.(P j E), E must be an
expression.

1 MACHINE M1
2 CONSTANTS
3 cc, dd, ee
4 PROPERTIES
5 cc = %(xx).(xx : NAT | skip) &
6 /* skip is not an expression */
7 dd = %(xx).(xx : NAT | UnknownExp) &
8 /* UnknownExp is not an expression */
9 ee = %(xx).(xx : NAT | xx = 2)
10 /* xx = 2 is not an expression ,
11 xx := 2 is correct */
12 END

4.42 <exp1> in <exp> should be an integer

The operators used in <exp> require that <exp1> should be an integer.

1 MACHINE M1
2 CONSTANTS
3 Relation
4 PROPERTIES
5 Relation : INT <-> INT

ATB-TCEM-CE-4.7.1 30/84

Type Checker — Error Message Manual

6 OPERATIONS
7 vv <-- op1 = vv := SIGMA(xx).(xx: 1..100 | bool(xx <= 20));
8 /* bool(xx <= 20) is a Boolean value*/
9 vv <-- op2 = vv := iterate(Relation , UnknownInteger)
10 /* UnknownInteger does not have a type*/
11 END

4.43 <exp1> in <exp> should be an integer set or an enumerated set

The operator used in <exp> requires that <exp1> represents an integer set or an enumerated set.

1 MACHINE M1
2 SETS
3 AA
4 OPERATIONS
5 vv <-- opMinAbst = vv := min(AA); /*AA is an abstract set */
6 vv <-- opMinScal = vv := min(3); /*3 is not a set */
7 vv <-- opMaxInc = vv := max(UnknownEns) /*UnknownEns is not a set*/
8 END

4.44 <exp1> in <exp> should be a relation

The operator used in <exp> requires that <exp1> represents a relation.

1 MACHINE M1
2 SETS
3 SS
4 CONSTANTS
5 cc, tt
6 PROPERTIES
7 cc = ran(6) & /* 6 is not a relation */
8 tt : NAT
9 OPERATIONS
10 vv <-- op1 = vv := rel(tt); /* tt is not a relation */
11 vv <-- op2 = vv := Unknown~; /* Unknown is not a relation */
12 vv <-- op3 = vv := fnc(SS) /* SS is not a relation */
13 END

4.45 <exp1> in <exp> should be a relation between a set and itself

The operator used in <exp> expects as an argument a relation between a set and itself.

1 MACHINE M1
2 SETS
3 EE, FF

ATB-TCEM-CE-4.7.1 31/84

Type Checker — Error Message Manual

4 CONSTANTS
5 Rel, Rel6, Clos
6 PROPERTIES
7 Rel : EE <-> FF &
8 Rel6 = iterate(Rel, 6) /* error as EE /= FF */
9 END

4.46 <exp1> in <exp> should be a sequence of sequences

The operator used in <exp> expects a sequence of sequences as its argument.

1 MACHINE M1
2 CONSTANTS
3 Sequence
4 PROPERTIES
5 Sequence : seq(INT)
6 OPERATIONS
7 vv <-- opConc = vv := conc(Sequence);
8 /* Sequence is not a sequence of sequences */
9 vv <-- opConc2 = vv := conc(UnknownSeq)
10 /* UnknownSeq is not a sequence of sequences */
11 END

4.47 <exp1> in <exp> should be a set

The operators used in <exp> require that <exp1> represents a set.

1 MACHINE M1
2 CONSTANTS
3 cc, dd, ee
4 SETS
5 EE
6 PROPERTIES
7 cc : UnknownEns & /* UnknownEns should be a set */
8 ee : NAT &
9 dd /: ee /* ee is not a set */
10 OPERATIONS
11 vv <-- opInter = vv := INTER(xx).(xx : NAT | ee);
12 /* ee is not a set */
13 vv <-- opCard = vv := card(UnknownEns);
14 /* UnknownEns is not a set */
15 vv <-- opSeq = vv := seq(1)
16 /* 1 is not a set */
17 END

ATB-TCEM-CE-4.7.1 32/84

Type Checker — Error Message Manual

4.48 <exp1> in <exp> should be a set of sets of same type

The operators used in <exp> require that <exp1> represent a set of sets of the same type.

1 MACHINE M1
2 CONSTANTS
3 aa, bb
4 PROPERTIES
5 aa = union(UnknownEns) & /* UnknownEns does not have a type */
6 bb = inter({1, 2}) /* {1, 2} is a set of integers */
7 END

4.49 Internal name clash between identifier <ident> and a renamed identifier of
the abstraction of <ident mach>

When a component renames a machine with the “pp” prefix, and when the latter has an identifier
called “ident”, the proof obligation generator and the prover handle the “ppident” identifuer and not
“pp.ident”. If a “ppident” identifier is also defined in a non renamed machine or in the component
itself, a conflict occurs. This conflict is detected so that there are never any incorrect proof obligations,
this is only due to the internal operation of Atelier B.

1 MACHINE M1 MACHINE M2
2 INCLUDES pp.M2 VARIABLES
3 END var
4 INVARIANT
5 var : NAT
6 INITIALISATION
7 var := 0
8 END
9
10 REFINEMENT M1_1
11 REFINES M1
12 VARIABLES
13 ppvar
14 INVARIANT
15 ppvar : BOOL /*conflict*/
16 INITIALISATION
17 ppvar := TRUE
18 END

4.50 Invalid assignement for a record element in <Expression>

This message is sent when a record element assignement is not correct.

1 MACHINE test

ATB-TCEM-CE-4.7.1 33/84

Type Checker — Error Message Manual

2 CONCRETE_VARIABLES
3 xx
4 INVARIANT
5 xx : INT --> struct(l1 : BOOL, l2 : 1..10)
6 INITIALISATION
7 xx :: INT --> struct(l1 : BOOL, l2 : 1..10)
8 OPERATIONS
9 op1 = BEGIN xx(1)'l1 := TRUE END
10 /* The syntaxe xx(1)'l1 is not allowed.
11 xx(1) := rec(TRUE,1) is correct. */
12 END

4.51 Invalid call of <ident op>: wrong number of input parameters

When an operation is called up, the number of effective parameters must equal the number of formal
parameters.

1 MACHINE M1 MACHINE M2
2 INCLUDES M2 OPERATIONS
3 OPERATIONS oper01(xx) = PRE
4 oper02 = BEGIN xx : NAT
5 oper01(10,10) THEN
6 END skip
7 END END
8 END

4.52 Invalid call of <ident op>: wrong number of output parameters

When calling up an operation, the number of effective parameters must equal the number of formal
parameters.

1 MACHINE M1 MACHINE M2
2 INCLUDES M2 OPERATIONS
3 OPERATIONS vv <-- opM2 = vv :=1
4 vv, ww <-- opM1 = END
5 vv, ww <-- opM2
6 END

4.53 Invalid constant <expression> in a branch of CASE

A constant listed set or a constant character set was used in a branch of a CASE substitution. Only
numerical constants or identifiers are allowed.

1 MACHINE M1

ATB-TCEM-CE-4.7.1 34/84

Type Checker — Error Message Manual

2 VARIABLES
3 ww
4 INVARIANT
5 ww : NAT
6 INITIALISATION
7 ww:=0
8 OPERATIONS
9 uu <-- OP = BEGIN
10 CASE ww OF
11 EITHER {0,1,2} THEN uu:=0
12 /* 0,1,2 without brackets is correct*/
13 OR "3,4,5" THEN uu:=1
14 /* 3,4,5 without brackets is correct */
15 OR _1 THEN uu:=2
16 /* _1 is not an identifier*/
17 ELSE uu:=3
18 END
19 END
20 END
21 END

4.54 Invalid extended machine <ident mach>, it uses other machines

A machine that performs a USES cannot be referenced in an IMPORTS clause. It cannot therefore
appear in the EXTENDS clause of an implementation, as this would result in importing it. Note
that this message only appears in an implementation. In an abstract machine or in a refinement, the
extension implies an inclusion, therefore it remains authorized.

1 MACHINE M2 IMPLEMENTATION M1_1
2 USES M3 EXTENDS M2
3 END END

4.55 Invalid formula in VALUES clause

A syntax error was detected in the VALUES clause. The different valuations must be separated by
semi colons, each valuation is indicated by a ‘=’ character.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 VALUES
4 c3 = 3 &
5 c4 = " " &
6 c5 = " "
7 /* c3 = 3 ; c4 = " " ; c5 = " " is correct */
8 END

ATB-TCEM-CE-4.7.1 35/84

Type Checker — Error Message Manual

4.56 Invalid identifier or invalid list separator

A syntax error was detected in a list of identifiers. It may be either an incorrect B language identifier,
or the use of a character other than a comma to separate the elements in the list. The definition of
a B language identifier is given in Chapter 1.

1 MACHINE M1
2 CONSTANTS
3 c1;c2
4 PROPERTIES
5 c1 : NAT &
6 c2 : NAT
7 END

4.57 Invalid imported machine <ident mach>, it uses other machines

A machine that performs USES cannot be referenced in an IMPORTS clause.

1 MACHINE M2 IMPLEMENTATION M1_1
2 USES M3 REFINES M1
3 END IMPORTS M2
4 END

4.58 Invalid input format

The specification text contains an incorrectly placed character. This may be a character string that
is not closed.

1 MACHINE M1
2 CONSTANTS
3 message
4 PROPERTIES /* this string is not closed */
5 message = "message title.
6 END

4.59 Invalid inputs in <op header>

The input parameters of an operation must be B language identifiers, separated by commas and
distinct from each other. The definition of a B identifier is given in Chapter 1.

1 MACHINE M1
2 OPERATIONS
3 op1(_1) = ... /* _1 is not an identifier */
4 ; vv <-- op2(b) = ... /* b is not an identifier */

ATB-TCEM-CE-4.7.1 36/84

Type Checker — Error Message Manual

5 ; op3(vv, vv) = ... /* vv appears twice */
6 ; op4(vv; ww) = ... /* the separator must be a comma */
7 END

4.60 Invalid label <ident label> in <ident elem rec>’<ident label>

This message is sent when <ident label> is not an item of the record element <ident elem rec>.

1 MACHINE M1
2 CONCRETE_CONSTANTS
3 cc
4 PROPERTIES
5 cc : struct(aa : BOOL, bb : BOOL, ee : NAT) &
6 cc'dd = 3
7 /* cc does not contain the label dd.
8 cc'ee = 3 is correct */
9 END

4.61 Invalid label <ident label> in a record expression

This message is sent when the same label <ident label> appears more than once in a record expression
and when this label is not a B language identifier.

1 MACHINE M1
2 CONCRETE_CONSTANTS
3 cc
4 PROPERTIES
5 cc : struct(aa : BOOL, bb : BOOL, 2cc : NAT, 2cc : NAT)
6 /* 2cc is not a B language identifier.
7 2cc appears more than once in the same record expression */
8 END

4.62 Invalid list of identifiers in enumerated set definition <enum def>

An element in an enumerated set must be a B language identifier (refer to the definition in Chapter
1). These elements must all be distinct and separated by commas.

1 MACHINE M1
2 SETS
3 ACTIONS = {open-door, close-door};
4 E1 = {"string"};
5 E2 = {1};
6 E4 = {aa, aa};
7 E5 = {aa; bb}
8 END

ATB-TCEM-CE-4.7.1 37/84

Type Checker — Error Message Manual

4.63 Invalid number of arguments for <subst>

The ‘becomes equal’ substitution is used with an incorrect number of parameters: the number of
variables is different from the number of values to assign.

1 MACHINE M1
2 VARIABLES
3 var1, var2
4 INVARIANT
5 var1 : NAT &
6 var2 : NAT
7 INITIALISATION
8 var1, var2 := 0
9 /* correct initialisation: var1, var2 := 0,0 */
10 END

4.64 Invalid operation call for assignment

The operation call cannot be used to assign this type of variables.

4.65 Invalid operation call for <ident> assignment in <exp>

The operation call cannot be used for the assignment of this type of variables.

4.66 Invalid output parameter <exp>

The effective parameter returned by a called up operation cannot be in the form f(x). It is necessary
to use an intermediate variable.

1 MACHINE M1
2 INCLUDES M2
3 VARIABLES
4 ff
5 INVARIANT
6 ff : 1..5 --> INT
7 INITIALISATION
8 ff :: 1..5 --> INT
9 OPERATIONS
10 op = ff(1) <-- opincluse
11 END

ATB-TCEM-CE-4.7.1 38/84

Type Checker — Error Message Manual

4.67 Invalid output parameters in <op header>

The output parameters of an operation must be B language identifiers, separated by commas and
distinct from each other. The definition of a B language identifier is given in Chapter 1.

1 MACHINE M1
2 OPERATIONS
3 a <-- op1 = ...; /* a is not an identifier */
4 _1 <-- op2(ii) = ...; /* _1 is not an identifier " */
5 (tt, tt) <-- op3 = ...; /* tt appears twice */
6 (tt; uu) <-- op4 = ...; /* the separator must be a comma */
7 END

4.68 Invalid predicate <pred>

The predicate <pred> is syntactically incorrect. This message may be generated when a substitution
or an expression is used when a predicate is expected. For example, do not confuse the assignment
sign :=' used in the substitutions only, and the equals sign=’ reserved for predicates.

1 MACHINE MACH
2 VARIABLES
3 var1, var2
4 INVARIANT
5 var1 : NAT &
6 var2 : NAT &
7 var1 := var2 /* var1 = var2 is correct */
8 INITIALISATION
9 var1:=1 || var2:=1
10 END

4.69 Invalid seen machine <ident mach>, it uses other machines

A machine performing USES cannot be referenced in a SEES clause.

1 MACHINE MAC02 MACHINE MACH
2 USES UMAC01 SEES MAC02
3 END END

4.70 Invalid sequence in <exp>

The operator used in <exp> expects a sequence as an argument.

1 MACHINE M1
2 CONSTANTS

ATB-TCEM-CE-4.7.1 39/84

Type Checker — Error Message Manual

3 c1, c2
4 PROPERTIES
5 c1 = size(TRUE) & /* TRUE is not a sequence */
6 c2 = first(UnknownSeq) /* UnknownSeq is not a sequence */

4.71 Invalid substitution <subst>

The substitution <subst> is syntactically incorrect. In the case of an operation call-up, the mes-
sage may be generated if the operation does not exist or is not visible (especially the modification
operations from a machine that is seen cannot be used in the “indicator” component).

1 MACHINE MACH
2 OPERATIONS
3 op1 = BEGIN
4 opinc(0) /* opinc: unknown operation */
5 END
6 ; op2 = BEGIN
7 MAXINT /* MAXINT is not a substitution */
8 END
9 ; op3 = BEGIN
10 v1 = v2 /* v1 := v2 is correct */
11 END
12 END

4.72 Invalid syntax for substitution CASE <subst>

The CASE substitution of the B component analyzed is syntactically incorrect. This message is
generated when a mandatory part of the CASE substitution is missing.

1 /*In the following CASE substitution , the second THEN is missing.*/
2 MACHINE M1
3 OPERATIONS
4 op(xx) = PRE xx : NAT THEN
5 CASE xx OF
6 EITHER 0,1,2 THEN skip
7 OR 3,4,5
8 END
9 END
10 END
11 END

ATB-TCEM-CE-4.7.1 40/84

Type Checker — Error Message Manual

4.73 Invalid syntax for substitution IF <subst>

The IF substitution in the analyzed component is syntactically incorrect. This message is generated
when a mandatory part of the IF is missing.

1 MACHINE M1
2 OPERATIONS
3 op1(xx) = PRE xx : NAT THEN
4 IF xx = 3 END /*THEN is missing*/
5 END;
6 op2(xx) = PRE xx : NAT THEN
7 IF xx < 2 THEN skip
8 ELSIF xx = 10 /*THEN in ELSIF is missing*/
9 END
10 END
11 END

4.74 Invalid syntax for substitution SELECT <subst>

The SELECT <subst> substitution is syntactically incorrect. This message may be generated when
a required part of SELECT is missing.

1 MACHINE M1
2 OPERATIONS
3 op(vv) = PRE vv : NAT THEN
4 SELECT vv>10 /* THEN is missing */
5 WHEN vv=0 THEN
6 skip
7 ELSE
8 skip
9 END
10 END
11 END

4.75 Invalid syntax in operation definition <op>

The operation definition <op> could not be analyzed. This may be due to a syntax problem, or due
to a priority level problem. Remember that two operations must be separated by a semi colon.

1 /* In the following OPERATIONS clause, an analysis error is due
2 to the precedence of `||' in relation to `=' */
3 MACHINE M1
4 OPERATIONS
5 op1 = skip || skip
6 END
7

ATB-TCEM-CE-4.7.1 41/84

Type Checker — Error Message Manual

8 /* Using BEGIN ... END in this case will resolve the problem */
9 MACHINE M1
10 OPERATIONS
11 op1 = BEGIN skip || skip END
12 END

4.76 Invalid type for <ident> ; <Expression> contains a record element without
label

<ident> designates a not typed data. <ident> cannot be typed by a record element whitout label.

1 MACHINE M1
2 CONCRETE_CONSTANTS
3 cc
4 PROPERTIES
5 cc=rec(2,3) /* rec(2,3) can not be used for typing cc. */
6 /* The expression cc = rec(item1:2,item2:3) is correct */
7 END

4.77 Invalid use of a record element without label

Two record elements without label can not be compared. This is because a record element without
label has a generic type.

1 MACHINE M1
2 ABSTRACT_VARIABLES
3 xx,yy
4 INVARIANT
5 xx : NAT &
6 yy : BOOL &
7 rec(xx,yy) = rec(2,TRUE)
8 /* The expression rec(xx,yy) = rec(2,TRUE) is not correct */
9 /* xx = 2 & yy = TRUE is correct */
10 INITIALISATION
11 xx := 2 ||
12 yy := TRUE
13 END

4.78 Invalid valuation of <ident const>

The rules that allow valuing sets and constants were violated. The types of the formal constants
defined in the abstraction PROPERTIES clause and the types of the values assigned in the imple-
mentation must be identical. Note that in addition, a set cannot be valued by another set from the
same component.

ATB-TCEM-CE-4.7.1 42/84

Type Checker — Error Message Manual

1 MACHINE MACH IMPLEMENTATION MACH_imp
2 SETS REFINES MACH
3 S1; S2 VALUES
4 CONSTANTS S1 = NAT /* ok */
5 c1 ; S2 = S1 /* no */
6 PROPERTIES ; c1 = TRUE /* no */
7 c1 = 1 END
8 END

4.79 <ident mach> is not a machine

A USES, SEES, INCLUDES, EXTENDS or IMPORTS clause in the analyzed component refers to
<ident mach> which is a refinement or an implementation. Only abstract machines may be covered
by a visibility clause.

1 IMPLEMENTATION IMP_1 MACHINE MACH
2 REFINES IMP SEES IMP_1
3 END /*an implementation cannot be seen*/
4 END

4.80 <ident> is not an identifier

Identifier <ident> breaks the syntax rules that define B language identifiers (refer to Chapter 1).

1 MACHINE M1
2 CONSTANTS
3 5, _1 /* 5 and _1 are not identifiers */
4 PROPERTIES
5 5 : NAT &
6 _1 : INT
7 END

4.81 Left hand side and right hand side of <exp> have incompatible type

When using an equals, not equals, an assignment, etc…, the types of the left hand and right hand
parts must be identical. When using operator such as , ><, /:, etc…, some of the rules on types
must be verified.

For example, when composing two relations: relation1; relation2 so that relation1 : A <-> B and
relation2 : C <-> D, B and C must be identical. If this is not the case, the error message is
generated.

ATB-TCEM-CE-4.7.1 43/84

Type Checker — Error Message Manual

1 MACHINE MACH
2 VARIABLES
3 v1, v2, v3
4 CONSTANTS
5 relation1
6 SETS
7 EE; FF; GG
8 PROPERTIES
9 relation1 : EE <-> FF
10 INVARIANT
11 v1:NAT &
12 v2:BOOL &
13 v3:STRING &
14 v2/: NAT & /* incompatibility */
15 v1/=v2 /* incompatibility */
16 INITIALISATION
17 v1:=0 || v2:=TRUE || v3:=""
18 OPERATIONS
19 op1 = v1:= v3 /* incompatibility */
20 vv <-- op2 = vv := 1..2 /\ BOOL; /* incompatibility */
21 vv <-- op5 = vv := relation1 |>> GG; /* incompatibility */
22 vv <-- op7 = vv := EE - FF /* incompatibility */
23 END

4.82 Left hand side in valuation <val> should be an identifier

The left hand side of a valuation must be a B language identifier (refer to the definition in Chapter
1).

1 IMPLEMENTATION M1_1
2 REFINES M1
3 VALUES
4 1 = TRUE;
5 _1 = 2
6 END

4.83 Left hand side of comparison <exp> has not been typed

The left hand side of <exp> has not be typed. This message may be generated when the typing
predicates are placed after property <exp>. The definition of a typing predicate is detailed in Chapter
1.

1 MACHINE M1(pp)
2 CONSTRAINTS
3 pp <= 1 & /* pp has not yet been typed*/
4 pp : NAT

ATB-TCEM-CE-4.7.1 44/84

Type Checker — Error Message Manual

5 CONSTANTS
6 cc
7 PROPERTIES
8 cc < 2 & /* cc has not yet been typed*/
9 cc : NAT
10 VARIABLES
11 vv
12 INVARIANT
13 vv >= 3 & /* vv has not yet been typed*/
14 vv : NAT
15 INITIALISATION
16 vv := 0
17 OPERATIONS
18 op(ii) = PRE ii >4 & ii : NAT THEN skip END
19 /* ii has not yet been typed */
20 END
21 /* To correct this specification , simply reverse the predicates */

4.84 Left hand side of comparison <exp> should be an integer

A comparison can only be made between integers.

1 MACHINE M1
2 CONSTANTS
3 cc
4 PROPERTIES
5 cc : BOOL &
6 cc >= 1
7 END

4.85 Left hand side of <exp> has not been typed

The left hand side of <exp> has not been typed. This message may be generated when the typing
predicates are placed after the <exp> property. The definition of a typing predicate is described in
Chapter 1.

1 REFINEMENT M1
2 CONSTANTS
3 pp
4 PROPERTIES
5 pp /= 1 & /* pp has not yet been typed*/
6 pp : NAT
7 OPERATIONS
8 uu, vv <-- op = BEGIN
9 uu := vv; /* vv has not yet been typed*/
10 vv := 1
11 END

ATB-TCEM-CE-4.7.1 45/84

Type Checker — Error Message Manual

12 END

4.86 Left hand side of <exp> should be an integer

The operator used in <exp> expects an integer on its left hand side.

1 MACHINE M1
2 OPERATIONS
3 vv <-- op1 = vv := UnknownVar * 2;
4 vv <-- op2 = vv := TRUE - 2;
5 vv <-- op3 = vv := TRUE mod FALSE
6 END

4.87 Left hand side of <exp> should be a relation

The operator used in <exp> expects a relation on its left hand side.

1 MACHINE M1
2 SETS
3 EE; FF
4 VARIABLES
5 relation , var
6 INVARIANT
7 relation : EE <-> FF & var : EE
8 INITIALISATION
9 relation :: EE <-> FF || var :: EE
10 OPERATIONS
11 v1 <-- op1 = v1 := (var || relation);
12 /* var is not a relation */
13 v2 <-- op2 = v2 := (Rinconnue >< relation)
14 /* Rinconnue is not a relation */
15 END

4.88 Left hand side of <exp> should be a sequence

The operator used in <exp> expects a sequence on its left hand side.

1 MACHINE M1
2 CONSTANTS
3 sequence
4 PROPERTIES
5 sequence : seq(INT)
6 OPERATIONS
7 vv <-- op1 = vv := 2 ^ sequence; /*2 is not a sequence*/
8 vv <-- op2 = vv := UnknownSeq <- 2 /*UnknownSeq is not a sequence*/

ATB-TCEM-CE-4.7.1 46/84

Type Checker — Error Message Manual

9 END

4.89 Left hand side of <exp> should be a set

The operator used in <exp> expects a set on its left hand side.

1 MACHINE M1
2 SETS
3 SS; TT
4 VARIABLES
5 relation ,
6 relation2
7 INVARIANT
8 relation : SS <-> TT &
9 relation2 : 2 <-> SS /*2 is not a set*/
10 INITIALISATION
11 relation :: SS <-> TT ||
12 relation2 :: UnknownEns <-> SS
13 /* UnknownEns is not a set*/
14 OPERATIONS
15 vv <-- op1 = vv := 3 \/ 1..2;
16 /*3 is not a set*/
17 vv <-- op2 = vv := (5 <| relation);
18 /*5 is not a set*/
19 vv <-- op4 = vv := TRUE * SS
20 /*TRUE is not a set*/
21 END

4.90 Local operation <ident op> has not been implemented

In an implementation, every local operation defined in the LOCAL OPERATIONS clause must be
implemented in the OPERATIONS clause.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 LOCAL_OPERATIONS
4 op = skip
5 END
6 /*op should be implemented*/

4.91 Local variable <ident> is read before being initialised

This message is only generated in implementation. The <ident> local variable is a variable defined
in a VAR substitution or in the list of output parameters for an operation. It is used when it has not
been initialised by a substitution.

ATB-TCEM-CE-4.7.1 47/84

Type Checker — Error Message Manual

1 IMPLEMENTATION M1_1
2 REFINES M1
3 OPERATIONS
4 ss, tt <-- op(ii) =
5 IF ii > 1 THEN
6 ss := 2
7 END;
8 tt := ss
9 /* ss was not initialised in all of the branches of IF */
10 END
11 END

4.92 Machine <ident mach> can not be refined, it uses other machines

A machine that performs a USES action cannot be refined, it is an abstract module.

1 MACHINE M1 REFINEMENT M1_1
2 USES M2 REFINES M1
3 END /*refinement impossible*/
4 END

4.93 Machine <ident mach1> should be included in <ident mach2> : it has
been included in the abstraction of <ident mach2>

Machine <ident mach1> is included in a component that refines <ident mach2>. However, <ident
mach2> does not include <ident mach1>, while some of its abstractions do. This is illegal.

If a component Mi includes a machine N, then: - none of its refinements includes or imports an N,
or - one of its refinements Mj includes or imports an N, and in this case ALL of the components of
the refinement string between Mi and Mj must include N.

This constraint is used to avoid certain identifier conflicts.

1 MACHINE M1 REFINEMENT M1_1
2 INCLUDES M2 REFINES M1
3 END END
4
5 REFINEMENT M1_2
6 REFINES M1_1
7 INCLUDES M2 /* illegal if M1_1 does not include M2*/
8 END

ATB-TCEM-CE-4.7.1 48/84

Type Checker — Error Message Manual

4.94 Machine <ident mach1> should be seen by <ident mach2>

The analyzed component M1 includes two machines M2 and M4 so that M2 used M4. The gluing
invariant that links the variables of M2 and M4 is defined in the INVARIANT clause of M2 but must
be proven at M1 level.

In the context that generates this message, M2 sees a machine M3 and the variables of M3 are
involved in the gluing invariant linking M2 and M4. However component M1 does not see M3, and
therefore it does not know anything about its variables. The proof is bound to fail. It is therefore
necessary to add M3 to the SEES clause in M1.

1 MACHINE M3 MACHINE M4
2 VARIABLES VARIABLES
3 v3 v4
4 INVARIANT INVARIANT
5 v3 : NAT v4 : NAT
6 INITIALISATION INITIALISATION
7 v3 := 0 v4 := 10
8 END END
9
10 MACHINE M2 MACHINE M1
11 SEES ss.M3 INCLUDES M2, uu.M4
12 USES uu.M4 /* missing: SEES ss.M3 */
13 VARIABLES END
14 v2
15 INVARIANT
16 v2 : NAT &
17 /*gluing invariant M2/M4 : */
18 v2 < ss.v3 + uu.v4
19 INITIALISATION
20 v2 :: NAT
21 END

4.95 Machine <ident mach1> should be seen by <ident mach2> (it is seen by
<ident mach3>)

If a machine is seen by a component, it must remain so by all of the components that come after
it in the refinement string. This message is therefore generated if a component M is refined by a
component N so that machine S appears in the SEES clause of M but not in that of N.

1 MACHINE M1 REFINEMENT M1_1
2 SEES M2 REFINES M1
3 END /* missing: SEES M2 */
4 END

ATB-TCEM-CE-4.7.1 49/84

Type Checker — Error Message Manual

4.96 Machine <ident mach> should have parameters

The analyzed component contains a CONSTRAINTS clause while it does not have parameters, but
this clause only allows defining the properties of component parameters.

1 MACHINE M1
2 CONSTANTS
3 c1
4 CONSTRAINTS
5 c1 : NAT /* predicate to place in a PROPERTIES clause */
6 END

4.97 Machine <ident mach1> uses <ident mach2> which is neither included nor
extended

When a machine that performs a USES action is included, all of the machines used must also be
included. For example, if M1 uses M2 that uses M3, then if M2 is included, M1 and M3 must also
be included.

1 MACHINE MAC02 MACHINE MACH
2 USES UMAC01 INCLUDES MAC02
3 END /* UMAC01 must also be included */
4 END

4.98 Missing symbol => in predicate <pred>

This message concerns expressions in the form !X.A. It is generated when A is not in the form (P
=> Q). Predicate P must contain the typing predicates for the variables of X. The definition of a
typing predicate is described in Chapter 1.

1 MACHINE M1
2 CONSTANTS
3 vv
4 PROPERTIES
5 vv : 1..10 &
6 !xx.(xx : NAT & xx >5 & xx > vv)
7 /* correct notation: !xx.(xx : NAT & xx > 5 => xx > vv) */
8 END

4.99 Multiple assignment of <ident var> in parallel substitutions

The same variable cannot be assigned in more than one branch in a simultaneous substitution.

ATB-TCEM-CE-4.7.1 50/84

Type Checker — Error Message Manual

1 /*The following machine attempts to give variable v1, the value 0
2 and the value 1 in parallel.
3 It is incorrect.*/
4 MACHINE MACH
5 VARIABLES
6 v1
7 INVARIANT
8 v1:NAT
9 INITIALISATION
10 v1:=0 ||
11 v1:=1
12 END
13
14 /*The following machine proposes multiple solutions to correctly
15 express the intuitive idea that was implemented opposite ,
16 i.e. for v1 to equal 0, or 1.*/
17 MACHINE MACH
18 VARIABLES
19 v1
20 INVARIANT
21 v1:NAT
22 INITIALISATION
23 v1 :: {0,1}
24 /*v1:(v1=0 or v1=1)
25 CHOICE v1:=0 OR v1:=1 END
26 are also possible*/
27 END

4.100 Multiple assignment of <ident> when calling local operation <ident op>

Local operation <ident op> modifies variable <ident>. When called, one of its effective output
parameter is also variable <ident>. Thus, the operation call is incorrect.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 CONCRETE_VARIABLES
4 vv
5 INVARIANT
6 vv : INT
7 INITIALISATION
8 vv := 1
9 LOCAL_OPERATIONS
10 ss <-- loc_op = BEGIN ss :: INT || vv :: NAT END
11 OPERATIONS
12 ss <-- loc_op = BEGIN ss := 1; vv := 2 END;
13 op = BEGIN vv <-- loc_op END
14 /* a correct version would be :
15 VAR tmp IN tmp <-- loc_op; vv := tmp END */

ATB-TCEM-CE-4.7.1 51/84

Type Checker — Error Message Manual

16 END

4.101 Multiple definition of identifier <ident> (because of the INCLUDES clause
transitivity used for <ident mch1>)

Identifier <ident> is defined both in the analyzed component and in a visible compo- nent. This
conflict may be due to the transitivity of the INCLUDES clause.

4.102 Multiple definition of identifier in

The analyzed component contains an internal identifier conflict.

1 MACHINE MACH
2 CONSTANTS
3 cst1,cst2,cst2 /* cst2 appears twice */
4 PROPERTIES
5 cst1 : NAT & cst2 : NAT
6 END

4.103 Multiple promotion of operation <ident op>

Each promoted operation must only be mentioned once.

1 MACHINE M1
2 INCLUDES M2
3 PROMOTES
4 op1, op1
5 END

4.104 Multiple reference of machine <ident mach>

The same machine must only appear once in the INCLUDES, IMPORTS, EXTENDS, SEES, USES
clauses of the same component.

1 MACHINE M1
2 INCLUDES M2
3 SEES M2
4 /* problem as M2 appears twice */
5 END

ATB-TCEM-CE-4.7.1 52/84

Type Checker — Error Message Manual

4.105 Multiple use of constant <ident cst> in branches of CASE

The same constant <ident cst> appears more than once in the branches of a CASE substitution,
whereas the different cases in a substitution must be mutually exclusive.

1 MACHINE M1
2 OPERATIONS
3 out <-- op(in) =
4 PRE in : NAT THEN
5 CASE in OF
6 EITHER 0,1,2 THEN out:=0
7 OR 2,3,4 THEN out:=1 /* 2 appears again */
8 END
9 END
10 END
11 END

4.106 Multiple use of identifier <ident> in branches of CASE

The same constant appears more than once in the branches of a substitution CASE, whereas the
different cases in a substitution must be mutually exclusive.

1 MACHINE M1
2 CONSTANTS
3 yy
4 PROPERTIES
5 yy : NAT
6 OPERATIONS
7 out <-- op(in) = PRE in : NAT THEN
8 CASE in OF
9 EITHER yy THEN out := 1
10 OR yy THEN out := 2 /*yy appears again */
11 ELSE out := 3
12 END
13 END
14 END
15 END

4.107 Multiple use of label <ident label> in a record expression

The labels contained in a record set or in a record element must be distinct from each other.

1 MACHINE M1
2 CONCRETE_CONSTANTS
3 cc
4 PROPERTIES

ATB-TCEM-CE-4.7.1 53/84

Type Checker — Error Message Manual

5 cc : struct(aa:NAT,bb:BOOL,aa:0..9)
6 /* Replace the expression aa:0..9 by ee:0..9 */
7 END

4.108 Object <ident> cannot be valued

The <ident> object is valued, when it is not valuable or unknown. This may be a typing error or a
visibility problem.

1 MACHINE M1 IMPLEMENTATION M1_1
2 SETS REFINES M1
3 S1; S2 VALUES
4 CONSTANTS S1 = NAT
5 c1 ; S2 = NAT1
6 PROPERTIES ; c1 = 1
7 c1 = 1 ; c2 = 1 /* c2 unknown */
8 END END

4.109 <ident op> of machine <ident mch> is called simultaneously with a
modification of variable <ident var>

A local operation can modify directly an imported variable. This message is produced when one
modifies an imported variable in parallel with a call to an operation of the same imported machine.

1 IMPLEMENTATION M1_1 MACHINE M0
2 REFINES M1 VARIABLES
3 IMPORTS M0 v1, v2
4 LOCAL_OPERATIONS INVARIANT
5 loc_op = BEGIN v1:NAT & v2:NAT & v1<=v2
6 increment || INITIALISATION
7 v2 := v2-1 v1:=0 || v2:=0
8 END OPERATIONS
9 /* M0 invariant is broken up */ increment = PRE
10 END v1<v2
11 THEN
12 v1:=v1+1
13 END
14 END

4.110 Only one ABSTRACT CONSTANTS clause is allowed

This message is produced when an ABSTRACT CONSTANTS clause should not take place in the
analyzed component. In particular, there cannot be two ABSTRACT CONSTANTS clauses in the

ATB-TCEM-CE-4.7.1 54/84

Type Checker — Error Message Manual

same component, or an ABSTRACT CONSTANTS clause and a HIDDEN CONSTANTS clause.
Both keywords have the same meaning indeed.

1 MACHINE M1
2 ABSTRACT_CONSTANTS
3 cst1
4 HIDDEN_CONSTANTS
5 cst2
6 PROPERTIES
7 cst1 : NAT & cst2 : NAT
8 END

4.111 Only one ABSTRACT VARIABLES clause is allowed

This message is produced when an ABSTRACT VARIABLES clause should not take place in the
analyzed component. In particular, it is illegal to have two ABSTRACT VARIABLES clauses in the
same machine, or an ABSTRACT VARIABLES clause anda VARIABLES or HIDDEN VARIABLES
clause, as these three keywords have the same meaning.

1 MACHINE MACH
2 ABSTRACT_VARIABLES
3 v1
4 VARIABLES
5 v2
6 INVARIANT
7 v1:NAT &
8 v2:NAT
9 INITIALISATION
10 v1:=0 ||
11 v2:=0
12 END

4.112 Only one ASSERTIONS clause is allowed

This message is sent when an ASSERTIONS clause should not take place in the analyzed component.
In particular having two ASSERTIONS clauses is forbidden.

1 MACHINE MACH
2 ASSERTIONS
3 TRUE
4 ASSERTIONS
5 TRUE
6 END

ATB-TCEM-CE-4.7.1 55/84

Type Checker — Error Message Manual

4.113 Only one component can be refined: <ident mach> is chosen for the
TypeCheck continuation

The REFINES clause in the analyzed refinement or the implementation refers to a number of machines.
This is illegal, as two components cannot be refined at the same time. In this case the check continues
with as refined component the last in the list. This is the component name that appears in the error
message.

1 REFINEMENT M1_1
2 REFINES M1a, M1b
3 END

4.114 Only one CONCRETE CONSTANTS clause is allowed

This message is generated when a CONCRETE CONSTANTS clause shouldnot take place in the
analyzed component. In particular, there cannot be two CONCRETE CONSTANTS clauses in the
same component, or a CONCRETE CONSTANTS clause and a CONSTANTS clause, as these two
keywords have the same meaning.

1 MACHINE M1
2 CONCRETE_CONSTANTS
3 cst1
4 CONSTANTS
5 cst2
6 PROPERTIES
7 cst1 : NAT & cst2 : NAT
8 END

4.115 Only one CONCRETE VARIABLES clause is allowed

This message is generated when a CONCRETE VARIABLES clause does not have its place in the
analyzed component. In particular, it is illegal to have two CONCRETE VARIABLES clauses.

1 MACHINE MACH
2 CONCRETE_VARIABLES
3 v1
4 CONCRETE_VARIABLES
5 v2
6 INVARIANT
7 v1:NAT &
8 v2:NAT
9 INITIALISATION
10 v1:=0 ||
11 v2:=0

ATB-TCEM-CE-4.7.1 56/84

Type Checker — Error Message Manual

12 END

4.116 Only one CONSTANTS clause is allowed

This message is generated when a CONSTANTS clause does not have its place in the analyzed
component. In particular, there cannot be two CONSTANTS clauses in the same component, or a
CONSTANTS clause and a VISIBLE CONSTANTS or CONCRETE CONSTANTS clause. This is
because these three keywords have the same meaning.

1 MACHINE M1
2 CONSTANTS
3 cst1
4 CONCRETE_CONSTANTS
5 cst2
6 PROPERTIES
7 cst1 : NAT & cst2 : NAT
8 END

4.117 Only one CONSTRAINTS clause is allowed

This message is generated when a CONSTRAINTS clause does not have its place in the analyzed
component. In particular, having two CONSTRAINTS clauses in the same component is not al-
lowed.

1 MACHINE M1(xx, yy)
2 CONSTRAINTS
3 xx : NAT
4 CONSTRAINTS
5 yy : NAT
6 END

4.118 Only one EXTENDS clause is allowed

This message is generated when an EXTENDS does not have its place in the analyzed component.
In particular, having two EXTENDS clauses in the same component is impossible.

1 MACHINE MACH
2 EXTENDS MAC1(NAT)
3 EXTENDS MAC2(1..100,BOOL)
4 END

ATB-TCEM-CE-4.7.1 57/84

Type Checker — Error Message Manual

4.119 Only one ABSTRACT CONSTANTS clause is allowed

This message is generated when a ABSTRACT CONSTANTS clause does not have its place in the
analyzed component. In particular, there cannot be two ABSTRACT CONSTANTS clauses in the
same component.

1 MACHINE M1
2 ABSTRACT_CONSTANTS
3 cst1
4 ABSTRACT_CONSTANTS
5 cst2
6 PROPERTIES
7 cst1 : NAT & cst2 : NAT
8 END

4.120 Only one ABSTRACT VARIABLES clause is allowed

This message is generated when a ABSTRACT VARIABLES clause does not have its place in the
analyzed component. In particular, it is illegal to have two ABSTRACT VARIABLES clauses in the
same machine, or a ABSTRACT VARIABLES clause and a VARIABLES clause. These two keywords
have the same meaning.

1 MACHINE MACH
2 HIDDEN_VARIABLES
3 v1
4 ABSTRACT_VARIABLES
5 v2
6 INVARIANT
7 v1:NAT &
8 v2:NAT
9 INITIALISATION
10 v1:=0 ||
11 v2:=0
12 END

4.121 Only one IMPORTS clause is allowed

This message is generated when an IMPORTS clause does not have its place in the analyzed imple-
mentation. In particular, it is illegal to have two IMPORTS clauses in the same implementation.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 IMPORTS M2
4 IMPORTS M3
5 END

ATB-TCEM-CE-4.7.1 58/84

Type Checker — Error Message Manual

4.122 Only one INCLUDES clause is allowed

This message is generated when an INCLUDES clause does not have its place in the analyzed
component. In particular, it is illegal to have two INCLUDES clauses in the same component.

1 MACHINE M1
2 INCLUDES M2
3 INCLUDES M3
4 END

4.123 Only one INITIALISATION clause is allowed

This message is generated when an INITIALISATION clause does not have its place in the analyzed
component. In particular, it is illegal to have two INITIALISATION clauses in the same component.

1 MACHINE MACH
2 VARIABLES
3 v1,v2
4 INVARIANT
5 v1:NAT &
6 v2:NAT
7 INITIALISATION
8 v1:=0 /* v1:=0 || v2:=0 is correct */
9 INITIALISATION
10 v2:=0
11 END

4.124 Only one INVARIANT clause is allowed

This message is generated when an INVARIANT does not have its place in the analyzed component.
In particular, it is illegal to have two INVARIANT clauses in the same component.

1 MACHINE MACH
2 VARIABLES
3 v1,v2
4 INVARIANT
5 v1:NAT /* v1:NAT & v2:NAT are correct */
6 INVARIANT
7 v2:NAT
8 INITIALISATION
9 v1:=0 ||
10 v2:=0
11 END

ATB-TCEM-CE-4.7.1 59/84

Type Checker — Error Message Manual

4.125 Only one LOCAL OPERATIONS clause is allowed

This message is produced when a LOCAL OPERATIONS clause should not take place in the analysed
component. In particular, it is forbidden to have two LOCAL OPERATIONS clause in the same
component.

1 IMPLEMENTATION MM_1
2 REFINES MM
3 LOCAL_OPERATIONS
4 op1 = BEGIN
5 skip
6 END
7 LOCAL_OPERATIONS
8 op2 = BEGIN
9 skip
10 END
11 END

4.126 Only one OPERATIONS clause is allowed

This message is sent when an OPERATIONS clause no longer has its place in the analyzed component.
In particular, it is illegal to have two OPERATIONS clauses in the same component.

1 MACHINE MACH
2 OPERATIONS
3 op1 = BEGIN
4 skip
5 END
6 OPERATIONS
7 op2 = BEGIN
8 skip
9 END
10 END

4.127 Only one PROMOTES clause is allowed

This message is generated when a PROMOTES clause does not have its place in the analyzed
component. In particular, it is illegal to have two PROMOTES clauses in the same component. All
of the promoted operations must appear in the same PROMOTES clause, even if they come from
different machines.

1 MACHINE MACH
2 INCLUDES MAC01(10), MAC02(1..1000, BOOL)
3 PROMOTES op_01
4 PROMOTES op_02 /* not correct */

ATB-TCEM-CE-4.7.1 60/84

Type Checker — Error Message Manual

5 END

4.128 Only one PROPERTIES clause is allowed

This message is sent when a PROPERTIES clause does not have its place in the analyzed component.
In particular, it is illegal to have two PROPERTIES clauses in the same component.

1 MACHINE MACH
2 CONSTANTS
3 c1, c2
4 PROPERTIES
5 c1 :NAT
6 PROPERTIES
7 c2 :NAT
8 END

4.129 Only one REFINES clause is allowed

This message is generated when a REFINES clause does not have its place in the analyzed component.
In particular, it is illegal to have two REFINES clauses in the same component. This is illegal as the
two components cannot be refined at the same time.

1 REFINEMENT M1_1
2 REFINES M1
3 REFINES M2
4 END

4.130 Only one SEES clause is allowed

This message is generated when a SEES clause does not have its place in the analyzed component.
In particular, it is illegal to have two SEES clauses in the same component.

1 MACHINE MACH
2 SEES SEE01
3 SEES SEE02
4 END

4.131 Only one SETS clause is allowed

This message is generated when a SETS clause does not have its place in the analyzed component.
In particular, it is illegal to have two SETS clauses in the same component.

ATB-TCEM-CE-4.7.1 61/84

Type Checker — Error Message Manual

1 MACHINE MACH
2 SETS
3 S1
4 SETS
5 S2
6 END

4.132 Only one USES clause is allowed

This message is generated when a USES clause does not have its place in the analyzed component.
In particular, it is illegal to have two USES clauses in the same.

1 MACHINE MACH
2 USES MAC1 /* MAC1, MAC2 is correct */
3 USES MAC2
4 END

4.133 Only one VALUES clause is allowed

This message is generated when a VALUES clause does not have its place in the analyzed component.
In particular, it is illegal to have two VALUES clauses in the same implementation.

1 IMPLEMENTATION IMP
2 REFINES REF
3 VALUES
4 S1 = NAT
5 VALUES
6 S2 = INT
7 END

4.134 Operation <ident op> does not exist in <mach>

The operation <ident op> appears in the PROMOTES clause of the analyzed component, but is not
defined in its abstraction. When an operation is promoted, it is considered as having been written in
the component itself. However, in a refinement, local operations can only be refinements of abstract
machine operations, with exactly the same signature.

1 MACHINE M1 MACHINE M2(ENS)
2 OPERATIONS OPERATIONS
3 res <-- op2 (xx,yy) = op1 = skip
4 PRE ; res <-- op2 (xx,yy) = PRE
5 xx:1..100 & yy:1..100 xx:ENS & yy:ENS
6 THEN THEN

ATB-TCEM-CE-4.7.1 62/84

Type Checker — Error Message Manual

7 res :: BOOL res:=bool(xx<=yy)
8 END END
9 END END
10
11 REFINEMENT M1_1
12 REFINES M1
13 EXTENDS M2(NAT) /* op1 produces an error message as it does not

correspond to
14 any operation in machine M1 */
15 END

4.135 Operation <ident op> does not exist in abstraction

The local operations of a refinement or an implementation must be specified in the abstract machine.
You cannot define a new operation in a refinement.

1 MACHINE M1 REFINEMENT M1_1
2 OPERATIONS REFINES M1
3 res <-- op1 (xx,yy) = OPERATIONS
4 PRE op2 = skip
5 xx:1..100 & yy:1..100 /*op2 does not exist in M1*/
6 THEN END
7 res :: BOOL
8 END
9 END

4.136 Operation <ident op> has not been implemented

In an implementation, all of the operations defined in the abstract machine must be implemented.

1 MACHINE M1 IMPLEMENTATION M1_1
2 OPERATIONS REFINES M1
3 op = skip END
4 END /*op must be implemented*/

4.137 Operation name <ident op> in <op header> is a keyword

<ident op> is a reserved word in B language (refer to Chapter 1): it cannot be used to name an
operation.

1 MACHINE M1
2 OPERATIONS
3 MAXINT(xx) = ... /* MAXINT: reserved word */
4 ; res <-- skip = ... /* skip: reserved word */
5 END

ATB-TCEM-CE-4.7.1 63/84

Type Checker — Error Message Manual

4.138 Operation name <ident op> in <op header> should be an identifier

The name of the operations must be a simple name, i.e. a B language identifier (refer to the definition
in Chapter 1).

1 MACHINE M1
2 OPERATIONS
3 _1 <-- val = ... /* _1 is not an identifier */
4 ; res <-- f(x) = ... /* f is not an identifier */
5 END

4.139 Output parameter <ident> has not been initialised

This message is only generated in implementation. The <ident> output parameter for the operation
currently being type checked was not initialised by the body of this operation.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 OPERATIONS
4 ss <-- op(ii) =
5 IF ii > 1 THEN
6 ss := 2
7 END
8 END
9 /* ss was not initialised in all branches of IF */

4.140 Output parameters <list ident> have not been initialised

This message is only generated in implementation. The <list ident> output parameters for the
operation currently being type checked were not initialised by the body of this operation.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 OPERATIONS
4 ss, tt <-- op(ii) =
5 IF ii > 1 THEN
6 ss := 2
7 ELSE
8 tt := 3
9 END
10 END
11 /* ss and tt were not typed in all of the branches of IF */

ATB-TCEM-CE-4.7.1 64/84

Type Checker — Error Message Manual

4.141 Parameter <ident> has not been typed

All scalar parameters must be typed in the CONSTRAINTS clause using a typing predicate (refer to
the definition in Chapter 1).

1 MACHINE MACH(par1,par2,par3)
2 CONSTRAINTS
3 par1 : NAT &
4 par2 < par1 /* par2 not typed */
5 END /* par3 not typed */

4.142 Parameter <ident> of <ident op> is already defined in <ident mach>

A conflict between the input/output parameters of the promoted operation <ident op> and a visible
identifier of machine <ident mach> was detected.

1 MACHINE M2
2 OPERATIONS
3 op1(xx) = PRE xx:NAT THEN
4 skip
5 END
6 END
7
8 MACHINE M1
9 INCLUDES M2
10 PROMOTES op1
11 VARIABLES
12 xx
13 /* conflict with xx in op1 */
14 INVARIANT
15 xx : NAT
16 INITIALISATION
17 xx :: NAT
18 END

4.143 Parameters of abstraction <ident mch1> and refinement <ident mch2>
differ

All of the refinements of a vertical development must have the same parameters as the abstract
machine (the number and the name of the parameters must be identical).

1 MACHINE MACH(var1,var2,ENS)
2 CONSTRAINTS
3 var1 : ENS &
4 var2 : ENS
5 END

ATB-TCEM-CE-4.7.1 65/84

Type Checker — Error Message Manual

6
7 REFINEMENT MACH_1(var,ENS)
8 /* var is surplus;
9 var1 and var2 are missing */
10 REFINES MACH
11 END

4.144 Prefix <ident1> in <ident1>.<ident2> is a keyword

The <ident1> prefix is a reserved word in the language (refer to Chapter 1). It cannot be used to
prefix a machine.

1 MACHINE M1
2 SEES skip.M0
3 END

4.145 Prefix in <ident> should be an identifier

A renaming prefix must be a correct B language identifier (refer to the definition in Chapter 1).

1 MACHINE MACH
2 INCLUDES 1.MAC1 , #10x.MAC1 , <>.MAC1
3 END

4.146 Prefix <ident> is used twice

For a given component each renaming prefix can only be used once, even if it is renamed as a separate
machine.

1 MACHINE MACH
2 INCLUDES pref.INC01
3 EXTENDS pref.INC02

END

4.147 <exp> ran(<exp>) should be a set of sets

The operator used in <exp> expects as its argument a function with a starting set that is a set of
sets.

1 MACHINE M1
2 SETS
3 SS; TT

ATB-TCEM-CE-4.7.1 66/84

Type Checker — Error Message Manual

4 CONSTANTS
5 function ,
6 relation
7 PROPERTIES
8 function : SS --> TT &
9 relation = rel(function)
10 /* TT should be a set of sets */
11 END

4.148 Read only or unknown left hand side <ident>

This error message is generated when the becomes “becomes equal” or “call-up operation” substitu-
tion attempts to modify an entity that cannot be modified. The visibility tables show which entities
are accessible in write mode and which are not, depending on which clause is considered.

1 MACHINE M1
2 CONSTANTS
3 c1
4 PROPERTIES
5 c1 : NAT
6 OPERATIONS
7 ini = (c1, UnknownId := 0, 0)
8 /* c1 constant that cannot be modified ,
9 UnknownId unknown identifier */
10 END

4.149 Refined component <ident> cannot be renamed

The name of the component that appears in the REFINES clause is preceded by a renaming prefix.
This is illegal.

1 REFINEMENT M1_1
2 REFINES pp.M1 /* Incorrect refinement: */
3 END
4
5 REFINEMENT M1_1
6 REFINES M1 /* Correct refinement: */
7 END

4.150 Right hand side of comparison <exp> has not been typed

The right hand side of <exp> has not been typed. This message may be generated when the typing
predicates are placed after the <exp> property. The definition of a typing predicate is described in
Chapter 1.

ATB-TCEM-CE-4.7.1 67/84

Type Checker — Error Message Manual

1 MACHINE M1(pp)
2 CONSTRAINTS
3 1 < pp & /* pp has not yet been typed*/
4 pp : NAT
5 CONSTANTS
6 cc
7 PROPERTIES
8 2 <= cc & /* cc has not yet been typed*/
9 cc : NAT
10 VARIABLES
11 vv
12 INVARIANT
13 3 > vv & /* vv has not yet been typed*/
14 vv : NAT
15 INITIALISATION
16 vv := 0
17 OPERATIONS
18 op(ii) = PRE 4 >= ii & ii : NAT THEN skip END
19 /* ii has not yet been typed*/
20 END
21 /* To correct this specification , simply reverse the predicates */

4.151 Right hand side of comparison <exp> should be an integer

A comparison can only be made between integers.

1 MACHINE M1
2 CONSTANTS
3 cc
4 PROPERTIES
5 cc : BOOL &
6 2 <= cc
7 END

4.152 Right hand side of <exp> has not been typed

The right hand side of <exp> has not been typed. This message may be generated when the typing
predicates are placed after the <exp> property. The definition of a typing predicate is described in
Chapter 1.

1 REFINEMENT M1
2 VARIABLES
3 pp
4 INVARIANT
5 1 /= pp & /* pp has not yet been typed*/
6 pp : NAT

ATB-TCEM-CE-4.7.1 68/84

Type Checker — Error Message Manual

7 INITIALISATION
8 pp := 4
9 OPERATIONS
10 uu, vv <-- op = BEGIN
11 uu := 1;
12 IF vv = 1 THEN /* vv has not yet been typed*/
13 vv := 2
14 END
15 END
16 END

4.153 Right hand side of <exp> should be an integer

The operator used in <exp> expects an integer on its right hand part.

1 MACHINE M1
2 OPERATIONS
3 vv <-- op1 = vv := 2 * UnknownVar;
4 vv <-- op2 = vv := 2 - TRUE;
5 vv <-- op3 = vv := TRUE mod FALSE
6 END

4.154 Right hand side of <exp> should be a relation

The operator used in <exp> expects a relation on the right hand side.

1 MACHINE M1
2 SETS
3 EE; FF
4 VARIABLES
5 relation , var
6 INVARIANT
7 relation : EE <-> FF & var : EE
8 INITIALISATION
9 relation :: EE <-> FF || var :: EE
10 OPERATIONS
11 v1 <-- op1 = v1 := (relation || var);
12 /* var is not a relation */
13 v2 <-- op2 = v2 := (relation >< Runknown)
14 /* Runknown is not a relation */
15 END

4.155 Right hand side of <exp> should be a sequence

The operator used in <exp> expects a sequence on its right hand side.

ATB-TCEM-CE-4.7.1 69/84

Type Checker — Error Message Manual

1 MACHINE M1
2 PROPERTIES
3 sequence : seq(INT)
4 OPERATIONS
5 vv <-- op1 = vv := sequence ^ 2;
6 /* 2 is not a sequence */
7 vv <-- op2 = vv := a1 -> UnknownSeq
8 /* UnknownSeq is not a sequence */
9 END

4.156 Right hand side of <exp> should be a set

The operator used in <exp> expects a set on the right hand side.

1 MACHINE M1
2 SETS
3 SS; TT
4 OPERATIONS
5 vv <-- op2 = vv := 1..2 /\ UnknownEns;
6 /* UnknownEns is not a set */
7 vv <-- op3 = (vv :: SS --> 5); /*5 is not a set */
8 vv <-- op4 = vv := SS - TRUE /*TRUE is not a set*/
9 END

4.157 Seen machine <ident mach> cannot be instanciated

Only the machines referenced in the INCLUDES, IMPORTS and EXTENDS clauses can be in-
stanced.

1 MACHINE MACH
2 SEES MCH01(NAT)
3 END

4.158 Sequence in <exp> should not be empty

The operator used in <exp> expects a non empty sequence as an argument.

1 MACHINE M1
2 CONSTANTS
3 c1
4 PROPERTIES
5 c1 = first(<>) /* first awaits as argument a non empty sequence */
6 END

ATB-TCEM-CE-4.7.1 70/84

Type Checker — Error Message Manual

4.159 Sequencing substitution is forbidden in a local operation specifications :
<subst>

This message is produced when a sequencing substitution “;” is used in a local operation specification,
as this substituion is not allowed in specification. The simultaneous substitution “jj” is recommended
instead.

1 IMPLEMENTATION MM_1
2 REFINES MM
3 CONCRETE_VARIABLES
4 v1, v2
5 INVARIANT
6 v1 : NAT & v2 : NAT
7 INITIALISATION
8 v1 := 0; v2 := 0
9 LOCAL_OPERATIONS
10 op = BEGIN
11 v1 := 0; v2 := 0
12 /* correct: v1:=0 || v2 := 0 or v1,v2 := 0,0 */
13 END
14 OPERATIONS
15 op = BEGIN
16 v1 := 0; v2 := 0
17 END
18 /* here, it's allowed */
19 END

4.160 Sequencing substitution is forbidden in a machine: <subst>

This message is generated when the sequencing substitution “;” is used in an abstract machine.
However this substitution is only allowed in refinement and in implementation modes. However, the
simultaneous substitution “jj” is recommended in specification mode.

1 MACHINE MACH
2 VARIABLES
3 v1, v2
4 INVARIANT
5 v1 : NAT & v2 : NAT
6 INITIALISATION
7 v1 := 0; v2 := 0
8 /* correct: v1:=0 || v2 := 0 or v1,v2 := 0,0 */
9 END

ATB-TCEM-CE-4.7.1 71/84

Type Checker — Error Message Manual

4.161 Set <ident set> is already defined

An identifier conflict involving the <ident set> set was detected.

1 MACHINE MACH
2 SETS
3 S1;S1
4 END

4.162 The ABSTRACT CONSTANTS clause is not allowed in an
implementation

The ABSTRACT CONSTANTS clause cannot be used in an implementation. In this case it is
preferable to use the VISIBLE CONSTANTS clause.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 ABSTRACT_CONSTANTS
4 cst
5 PROPERTIES
6 cst : NAT
7 END

4.163 The ABSTRACT VARIABLES clause is not allowed in an implementation

The ABSTRACT VARIABLES clause cannot be used in an implementation. In this case it is preferable
to use the CONCRETE VARIABLES clause.

1 IMPLEMENTATION M1
2 REFINES M1
3 ABSTRACT_VARIABLES
4 v1
5 INVARIANT
6 v1 : NAT
7 INITIALISATION
8 v1 := 0
9 END

4.164 The component <ident mach> cannot be referenced by itself

A B language component cannot be referenced by itself in one of its SEES, INCLUDES, EXTENDS
or USES clauses.

ATB-TCEM-CE-4.7.1 72/84

Type Checker — Error Message Manual

1 MACHINE MACH(XX)
2 CONSTRAINTS
3 card(XX)=5
4 INCLUDES MACH(1..5) /* illegal attempt at recursivity */
5 END

4.165 The CONSTRAINTS clause is only allowed in a machine

The analyzed component should not contain a CONSTRAINTS clause. This message is generated
in a refinement or in an implementation when attempting to specify parameter constraints. These
constraints must be specified exclusively in the abstract machine.

1 REFINEMENT M1(xx, yy)
2 REFINES M1
3 CONSTRAINTS
4 xx : NAT & yy : NAT
5 END

4.166 The ABSTRACT CONSTANTS clause is not allowed in an
implementation

The ABSTRACT CONSTANTS clause cannot be used in an implementation. In this case, it is
preferable to use the VISIBLE CONSTANTS clause.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 ABSTRACT_CONSTANTS
4 cst
5 PROPERTIES
6 cst : NAT
7 END

4.167 The ABSTRACT VARIABLES clause is not allowed in an implementation

The ABSTRACT VARIABLES clause cannot be used in an implementation. In this case, it is
preferable to use the CONCRETE VARIABLES clause.

1 IMPLEMENTATION M1
2 REFINES M1
3 ABSTRACT_VARIABLES
4 v1
5 INVARIANT
6 v1 : NAT

ATB-TCEM-CE-4.7.1 73/84

Type Checker — Error Message Manual

7 INITIALISATION
8 v1 := 0
9 END

4.168 The implementation <ident mach> cannot be refined

The analyzed component refines an implementation. However, only abstract machines and refine-
ments can be refined. The implementation is the final step in a vertical development (development
by successive refinements).

1 IMPLEMENTATION IMP REFINEMENT REF
2 REFINES MACH REFINES IMP /*error*/
3 END END

4.169 The IMPORTS clause is only allowed in an implementation

This message is generated when an abstract machine or a refinement contains an IMPORTS clause.
This is exclusively reserved for the implementation. However, the INCLUDES clause may be used.

1 MACHINE Mach
2 IMPORTS ImpMch0(10)
3 END

4.170 The INCLUDES clause is not allowed in an implementation

This message is generated when an implementation contains an INCLUDES clause. This is only
allowed in abstract machines and in refinements. However, the IMPORTS clause, dedicated to the
implementation, may be used.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 INCLUDES IncMch04(10)
4 END

4.171 The LOCAL OPERATIONS clause is only allowed in an implementation

This message is produced when an abstract machine or a refinement contains a LOCAL OPERA-
TIONS clause. The latter can only be used in implementations.

1 MACHINE Mach
2 LOCAL_OPERATIONS

ATB-TCEM-CE-4.7.1 74/84

Type Checker — Error Message Manual

3 op = skip
4 END

4.172 The refined machine <ident mach> cannot be required

The abstract machine refined by the analyzed component cannot appear in any of its visibility
clauses.

REFINEMENT MAC02 REFINES MACH INCLUDES MACH /* MACH cannot be included */
END

4.173 The REFINES clause is not allowed in a machine

This message is sent when a REFINES clause appears in an abstract machine, when an abstract
machine cannot refine a B language component. Only a refinement (identified by the first word of
the REFINEMENT source) and an implementation (identified by the first word in the IMPLEMEN-
TATION source) can (and must) contain a REFINES clause.

1 MACHINE M0
2 REFINES M1
3 END

4.174 The REFINES clause missing

The analyzed refinement or implementation does not have a REFINES clause. This clause is manda-
tory.

1 REFINEMENT REF_1
2 END

4.175 The USES clause is only allowed in a machine

This message is generated when a refinement or an implementation contains a USES clause. This
clause is only allowed in an abstract machine.

1 REFINEMENT M1_1
2 REFINES M1
3 USES M2
4 END

ATB-TCEM-CE-4.7.1 75/84

Type Checker — Error Message Manual

4.176 The VALUES clause is only allowed in an implementation

This message is generated when an abstract machine or re

nement contains a VALUES clause. The valuation of constants and sets is only possible in an
implementation. The PROPERTIES clause may possibly force a constant to take a given value, but
it will still have to be valued, with the same value, in the implementation.

1 MACHINE M1
2 CONSTANTS
3 c1
4 VALUES
5 c1 = 0
6 END

4.177 The VARIABLES clause is not allowed in an implementation

This message is generated when an implementation contains a VARIABLES clause. This clause is
equivalent to the HIDDEN VARIABLES clause and it cannot therefore be used in an implementation.
In this case it is preferable to use the CON- CRETE VARIABLES clause.

1 IMPLEMENTATION M1
2 REFINES M1
3 VARIABLES
4 v1
5 INVARIANT
6 v1 : NAT
7 INITIALISATION
8 v1 := 0
9 END

4.178 Unknown renamed identifier: <ident1>.<ident2>

Form <ident1>.<ident2> is a renaming: it designates the identifier <ident2> defined in a requested
machine renamed using the <ident1> prefix. This message is generated when identifier <ident2>
is visible in none of the machines renamed with the <ident1> prefix. This may be due to a typing
error or violation of the visibility constraints.

1 MACHINE M1 MACHINE M2
2 SEES pp.M2 ABSTRACT_CONSTANTS
3 END cst2
4 PROPERTIES
5 cst2 : NAT
6 END
7

ATB-TCEM-CE-4.7.1 76/84

Type Checker — Error Message Manual

8 REFINEMENT M1_1
9 REFINES M1
10 ABSTRACT_CONSTANTS
11 pp.cst2
12 PROPERTIES
13 pp.cst2 : NAT
14 END

4.179 Used machine <ident mach> cannot be instanciated

Only the machines referenced in the INCLUDES, IMPORTS and EXTENDS clauses can be instanci-
ated.

1 MACHINE MACH
2 USES MCH01(NAT)
3 END

4.180 Use of non implementable arrays in <exp>

This message is generated for an implementation. An array is not implementable in B0 if its array is
not an interval or an enumerated set.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 VISIBLE_CONSTANTS
4 cc
5 PROPERTIES
6 cc : INTEGER --> BOOL
7 CONCRETE_VARIABLES
8 vv
9 INVARIANT
10 vv : INTEGER --> BOOL
11 INITIALISATION
12 vv := cc /* cc is not a finite set of indices */
13 END

4.181 Variable <ident var> has not been typed

All of the variables must be typed in the INVARIANT clause using a typing predicate (refer to the
definition in Chapter 1).

1 MACHINE MACH
2 VARIABLES
3 var1, var2, var3

ATB-TCEM-CE-4.7.1 77/84

Type Checker — Error Message Manual

4 INVARIANT
5 var1 : NAT &
6 var2 < var1 /* var2 must be typed */
7 /* var3 must be typed */
8 INITIALISATION
9 var1, var2, var3 := 5, 6, 7
10 END

4.182 Variable <ident> is not an implementable array

This message is generated for an implementation. An array is not implementable in B0 if its array is
not an interval or an enumerated set.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 CONCRETE_VARIABLES vv
4 INVARIANT
5 vv : INTEGER --> BOOL
6 INITIALISATION
7 vv := INTEGER * {TRUE} /* INTEGER is not bounded */
8 END

4.183 Variable <ident> should be initialised

All of the variables defined in a component must be initialised in the INITIALISATION clause.

1 MACHINE MACH
2 VARIABLES
3 xx,yy
4 INVARIANT
5 xx:NAT & yy:NAT
6 INITIALISATION
7 xx:=0 /* yy must be initialised */
8 END

4.184 Variant <exp> should designate a natural

In a WHILE loop, the variant must be an expression that designates a natural integer.

1 IMPLEMENTATION M1_1
2 REFINES M1
3 OPERATIONS
4 opM1 = BEGIN
5 WHILE 12 <0 DO skip INVARIANT 6 : NAT VARIANT "string" END;
6 /* "string" is not a natural */

ATB-TCEM-CE-4.7.1 78/84

Type Checker — Error Message Manual

7 WHILE 12 <0 DO skip INVARIANT 6 : NAT VARIANT ident_unknown END
8 /* ident_unknown's type is unknown */
9 END
10 END

4.185 VAR substitution is forbidden in a local operation specification : <subst>

The VAR substitution is a programming substitution reserved for refinement and implementation. In
a local operation specification, a LET or ANY substitution must be used instead.

1 IMPLEMENTATION MM_1
2 REFINES MM
3 LOCAL_OPERATIONS
4 op = VAR vv IN vv := 2 END
5 /* incorrect specification:
6 LET vv BE vv = 2 IN skip END is correct */
7 OPERATIONS
8 op = VAR vv IN vv := 2 END
9 /* correct implementation */
10 END

4.186 VAR substitution is forbidden in a machine: <subst>

The VAR substitution is a programming substitution reserved for refinements and implementations.
In a machine, a LET or ANY substitution must be used instead.

1 /* Incorrect machine: */
2 MACHINE M1
3 OPERATIONS
4 op = VAR vv IN vv := 2 END
5 END
6
7 /* Correct machine: */
8 MACHINE M1
9 OPERATIONS
10 op = LET vv BE vv = 2 IN skip END
11 END

4.187 WHILE substitution is forbidden in a local operation specification :
<subst>

This message is produced when a WHILE loop is used in a local operation specification. This
instruction is not a specification substitution, indeed.

ATB-TCEM-CE-4.7.1 79/84

Type Checker — Error Message Manual

1 IMPEMENTATION MM_1
2 REFINES MM
3 CONCRETE_VARIABLES
4 vv
5 INVARIANT
6 vv : NAT
7 INITIALISATION
8 vv := 0
9 LOCAL_OPERATIONS
10 opWhile =
11 WHILE vv > 10
12 DO skip
13 INVARIANT vv := NAT
14 VARIANT vv
15 /* forbidden */
16 END
17 OPERATIONS
18 opWhile =
19 WHILE vv > 10
20 DO skip
21 INVARIANT vv := NAT
22 VARIANT vv
23 END
24 /* allowed */
25 END

4.188 WHILE substitution is only allowed in an implementation: <subst>

This message is generated when a WHILE loop is used in an abstract machine or in a refinement.
This substitution is only allowed in implementation mode, indeed.

1 MACHINE MACH
2 VARIABLES
3 vv
4 INVARIANT
5 vv : NAT
6 INITIALISATION
7 vv := 0
8 OPERATIONS
9 opWhile =
10 WHILE vv > 10
11 DO skip
12 INVARIANT vv := NAT
13 VARIANT vv
14 END
15 END

ATB-TCEM-CE-4.7.1 80/84

Type Checker — Error Message Manual

4.189 Wrong number of parameters for instanciated machine <ident mach>

For an inclusion with instancing, you must instance all of the parameters of the included machine.

1 MACHINE M1 MACHINE M2(p1, p2)
2 INCLUDES M2(TRUE) CONSTRAINTS
3 /* value of p2 is missing */ p1: BOOL & p2: INT
4 END END

4.190 Wrong type for actual input parameters of called operation <ident op>

The formal input parameters for the called operation <ident op> and the effective parameters are
not of the same type. The types of formal operation parameters and the types of values set as
arguments for a call-up, must be identical.

1 MACHINE MACH MACHINE MAC01
2 INCLUDES MAC01 OPERATIONS
3 OPERATIONS oper01(x1) = PRE x1:NAT THEN
4 op = oper01("error") skip
5 END END
6 END

4.191 Wrong type for actual output parameters of called operation <ident op>

The formal output parameters from the <ident op> operation and the effective parameters are not
of the same type. The types of the formal parameters of the operation and the types of variables
that receive the returned value after call-up must be identical.

1 MACHINE MACH MACHINE MAC01
2 INCLUDES MAC01 OPERATIONS
3 VARIABLES vv <--oper01 =
4 ww vv := 2
5 INVARIANT /* vv is an integer value */
6 ww : BOOL END
7 INITIALISATION
8 ww := TRUE
9 OPERATIONS
10 op = ww <-- oper01
11 /* ww is a Boolean value */
12 END

ATB-TCEM-CE-4.7.1 81/84

Type Checker — Error Message Manual

4.192 Wrong type for actual parameter <ident param> of machine <ident
mach>

This actual parameters is used when the instancing of an included machine is not of the correct type.
In practice, when performing an instantiated inclusion, the types of the included machine’s formal
parameters and the types of the effective parameters must be identical. This may also be caused
by a syntax error (is <ident> a correct B language identifier?) or a visibility error (is the <ident>
object visible?).

1 MACHINE M2(p1, p2, p3) MACHINE M1
2 CONSTRAINTS INCLUDES M2(UnknownParam , 67, _1)
3 p1 : NAT & p2 : BOOL & p3 : INT /*UnknownParam is unknown */
4 END /* 67 is not the correct type,
5 _1 is not a B ident*/
6 END

4.193 Wrong type for expression <exp> in a CASE substitution

The expression that should determine the performance of the CASE substitution has an illegal type.
This expression must be an integer type, a Boolean type, or an element of an abstract set or of a
listed set.

1 MACHINE M1
2 VARIABLES
3 SS
4 INVARIANT
5 SS <: NAT
6 INITIALISATION
7 SS :: POW(NAT)
8 OPERATIONS
9 op1 =
10 CASE "sting" OF
11 EITHER 1 THEN skip
12 ELSE skip
13 END
14 END;
15 op2 =
16 CASE UnknownExp OF
17 EITHER 1 THEN skip
18 ELSE skip
19 END
20 END;
21 op3 =
22 CASE SS OF /*SS is part of NAT*/
23 EITHER 1 THEN skip
24 ELSE skip

ATB-TCEM-CE-4.7.1 82/84

Type Checker — Error Message Manual

25 END
26 END
27 END

ATB-TCEM-CE-4.7.1 83/84

Type Checker — Error Message Manual

5 Internal Error Messages

The messages presented in this chapter do appear only in case of forbidden use of Atelier B - for
example, manual use of filles from the Data Base Project. It is therefore necessary to redo type
checking for the component stated in the message.

5.1 Bad magic number for <ident mach>.nf

The .nf file assigned to component <ident mach> was not generated with the same version of the
Type Checker. It cannot therefore be used by this version. Run the Type Checker again on <ident
mach>.

5.2 Cannot load information file of component <ident mach>

The analyzed component references the <ident mach> component whose .nf file does not exist or
is empty.

5.3 Wrong Normal Form format for the refined structure.

The .nf file relating to the refined component was modified by an action external to Atelier B.

ATB-TCEM-CE-4.7.1 84/84

	Introduction
	Definitions
	Warning Messages
	Concrete constant <ident cst> has not been valued
	Concrete constant <ident cst> is not an implementable array
	Concrete constant <ident cst> may not be implementable
	Constant <ident cst> may not be implementable is not an implementable record : it uses a non implementable array
	Deferred set <ident set> has not been valued
	Identifier <ident> is already used
	Local variable <ident> may be read before being initialised
	Local variable <ident> may not be initialised
	Local variables <list ident> may not be initialised
	Output parameter <ident> may not be initialised
	Output parameters <list ident> may not be initialised

	Error Messages
	$0 is not allowed: <ident>$0
	Abstract and concrete headers of local operation <ident op> differ
	Abstract and concrete headers of operation <ident op> differ
	Abstract constant <ident cst> cannot be used in <ident mach> instanciation
	Abstract constant <ident> has not been typed
	Abstract constant <ident hcst> has not the same type in <ident comp1> and in <ident comp2>
	Abstraction and refinement have the same name
	Abstract set name should be an identifier, or invalid list separator
	<exp> and have incompatible type in a CASE substitution
	<ident op> and another operation of <ident mach> are called simultaneously
	A record element whithout label can not be used in <Expression>
	Bound <ident> of <exp> should be an integer
	<ident> can not be typed by fg
	Component name <ident> is a keyword
	Component name <ident> should be an identifier
	Concrete variable <ident> is implicitly implemented with a variable of <ident> which has not the same type
	Constant <ident> has not been typed
	Constant <ident> is not an implementable array
	Constants should be defined in the PROPERTIES clause
	<ident> declaration is not visible
	Distinct definitions of enumerated set <ident set>
	<ident> does not exist or is not a visible operation
	Element <ident elt> of set <ident set> is already defined
	Enumerated set name in definition <enum def> should be an identifier
	<ident cst> has not the same type in <ident mach1> (or in an abstraction <ident mach1>) and in <ident mach2>
	Identifier <ident> is a keyword
	Identifier <ident> is already defined
	Identifier <ident cst> is already valued
	Identifier <ident> is defined in <ident mach1> and in <ident mach2>
	Identifier <ident> is defined in <ident mch1> and in an included renamed machine of <ident mch2>
	Identifier <ident> is defined in <ident mch1> and in <ident mch2> (or in an abstraction of <ident mch2>)
	Identifier <ident> is defined in an included (possibly renamed) machine of <ident mch1> and in an included (possibly renamed) machine of <ident mch2>
	Identifier <ident> is defined in an included renamed machine of <ident mch1> and in <ident mch2>
	Identifier <ident> is defined in <ident mch1> (or in <ident mch1>'s abstractions) and in <ident mch2>
	 in can not be typed by a record element without label
	Incompatible types in <exp>
	<exp1> in <exp2> has not been typed
	<exp1> in <exp> should be a couple of sets
	<exp1> in <exp> should be a function
	<exp1> in <exp> should be a list of distinct identifiers
	<exp1> in <exp> should be an expression
	<exp1> in <exp> should be an integer
	<exp1> in <exp> should be an integer set or an enumerated set
	<exp1> in <exp> should be a relation
	<exp1> in <exp> should be a relation between a set and itself
	<exp1> in <exp> should be a sequence of sequences
	<exp1> in <exp> should be a set
	<exp1> in <exp> should be a set of sets of same type
	Internal name clash between identifier <ident> and a renamed identifier of the abstraction of <ident mach>
	Invalid assignement for a record element in <Expression>
	Invalid call of <ident op>: wrong number of input parameters
	Invalid call of <ident op>: wrong number of output parameters
	Invalid constant <expression> in a branch of CASE
	Invalid extended machine <ident mach>, it uses other machines
	Invalid formula in VALUES clause
	Invalid identifier or invalid list separator
	Invalid imported machine <ident mach>, it uses other machines
	Invalid input format
	Invalid inputs in <op header>
	Invalid label <ident label> in <ident elem rec>'<ident label>
	Invalid label <ident label> in a record expression
	Invalid list of identifiers in enumerated set definition <enum def>
	Invalid number of arguments for <subst>
	Invalid operation call for assignment
	Invalid operation call for <ident> assignment in <exp>
	Invalid output parameter <exp>
	Invalid output parameters in <op header>
	Invalid predicate <pred>
	Invalid seen machine <ident mach>, it uses other machines
	Invalid sequence in <exp>
	Invalid substitution <subst>
	Invalid syntax for substitution CASE <subst>
	Invalid syntax for substitution IF <subst>
	Invalid syntax for substitution SELECT <subst>
	Invalid syntax in operation definition <op>
	Invalid type for <ident> ; <Expression> contains a record element without label
	Invalid use of a record element without label
	Invalid valuation of <ident const>
	<ident mach> is not a machine
	<ident> is not an identifier
	Left hand side and right hand side of <exp> have incompatible type
	Left hand side in valuation <val> should be an identifier
	Left hand side of comparison <exp> has not been typed
	Left hand side of comparison <exp> should be an integer
	Left hand side of <exp> has not been typed
	Left hand side of <exp> should be an integer
	Left hand side of <exp> should be a relation
	Left hand side of <exp> should be a sequence
	Left hand side of <exp> should be a set
	Local operation <ident op> has not been implemented
	Local variable <ident> is read before being initialised
	Machine <ident mach> can not be refined, it uses other machines
	Machine <ident mach1> should be included in <ident mach2> : it has been included in the abstraction of <ident mach2>
	Machine <ident mach1> should be seen by <ident mach2>
	Machine <ident mach1> should be seen by <ident mach2> (it is seen by <ident mach3>)
	Machine <ident mach> should have parameters
	Machine <ident mach1> uses <ident mach2> which is neither included nor extended
	Missing symbol => in predicate <pred>
	Multiple assignment of <ident var> in parallel substitutions
	Multiple assignment of <ident> when calling local operation <ident op>
	Multiple definition of identifier <ident> (because of the INCLUDES clause transitivity used for <ident mch1>)
	Multiple definition of identifier in
	Multiple promotion of operation <ident op>
	Multiple reference of machine <ident mach>
	Multiple use of constant <ident cst> in branches of CASE
	Multiple use of identifier <ident> in branches of CASE
	Multiple use of label <ident label> in a record expression
	Object <ident> cannot be valued
	<ident op> of machine <ident mch> is called simultaneously with a modification of variable <ident var>
	Only one ABSTRACT CONSTANTS clause is allowed
	Only one ABSTRACT VARIABLES clause is allowed
	Only one ASSERTIONS clause is allowed
	Only one component can be refined: <ident mach> is chosen for the TypeCheck continuation
	Only one CONCRETE CONSTANTS clause is allowed
	Only one CONCRETE VARIABLES clause is allowed
	Only one CONSTANTS clause is allowed
	Only one CONSTRAINTS clause is allowed
	Only one EXTENDS clause is allowed
	Only one ABSTRACT CONSTANTS clause is allowed
	Only one ABSTRACT VARIABLES clause is allowed
	Only one IMPORTS clause is allowed
	Only one INCLUDES clause is allowed
	Only one INITIALISATION clause is allowed
	Only one INVARIANT clause is allowed
	Only one LOCAL OPERATIONS clause is allowed
	Only one OPERATIONS clause is allowed
	Only one PROMOTES clause is allowed
	Only one PROPERTIES clause is allowed
	Only one REFINES clause is allowed
	Only one SEES clause is allowed
	Only one SETS clause is allowed
	Only one USES clause is allowed
	Only one VALUES clause is allowed
	Operation <ident op> does not exist in <mach>
	Operation <ident op> does not exist in abstraction
	Operation <ident op> has not been implemented
	Operation name <ident op> in <op header> is a keyword
	Operation name <ident op> in <op header> should be an identifier
	Output parameter <ident> has not been initialised
	Output parameters <list ident> have not been initialised
	Parameter <ident> has not been typed
	Parameter <ident> of <ident op> is already defined in <ident mach>
	Parameters of abstraction <ident mch1> and refinement <ident mch2> differ
	Prefix <ident1> in <ident1>.<ident2> is a keyword
	Prefix in <ident> should be an identifier
	Prefix <ident> is used twice
	<exp> ran(<exp>) should be a set of sets
	Read only or unknown left hand side <ident>
	Refined component <ident> cannot be renamed
	Right hand side of comparison <exp> has not been typed
	Right hand side of comparison <exp> should be an integer
	Right hand side of <exp> has not been typed
	Right hand side of <exp> should be an integer
	Right hand side of <exp> should be a relation
	Right hand side of <exp> should be a sequence
	Right hand side of <exp> should be a set
	Seen machine <ident mach> cannot be instanciated
	Sequence in <exp> should not be empty
	Sequencing substitution is forbidden in a local operation specifications : <subst>
	Sequencing substitution is forbidden in a machine: <subst>
	Set <ident set> is already defined
	The ABSTRACT CONSTANTS clause is not allowed in an implementation
	The ABSTRACT VARIABLES clause is not allowed in an implementation
	The component <ident mach> cannot be referenced by itself
	The CONSTRAINTS clause is only allowed in a machine
	The ABSTRACT CONSTANTS clause is not allowed in an implementation
	The ABSTRACT VARIABLES clause is not allowed in an implementation
	The implementation <ident mach> cannot be refined
	The IMPORTS clause is only allowed in an implementation
	The INCLUDES clause is not allowed in an implementation
	The LOCAL OPERATIONS clause is only allowed in an implementation
	The refined machine <ident mach> cannot be required
	The REFINES clause is not allowed in a machine
	The REFINES clause missing
	The USES clause is only allowed in a machine
	The VALUES clause is only allowed in an implementation
	The VARIABLES clause is not allowed in an implementation
	Unknown renamed identifier: <ident1>.<ident2>
	Used machine <ident mach> cannot be instanciated
	Use of non implementable arrays in <exp>
	Variable <ident var> has not been typed
	Variable <ident> is not an implementable array
	Variable <ident> should be initialised
	Variant <exp> should designate a natural
	VAR substitution is forbidden in a local operation specification : <subst>
	VAR substitution is forbidden in a machine: <subst>
	WHILE substitution is forbidden in a local operation specification : <subst>
	WHILE substitution is only allowed in an implementation: <subst>
	Wrong number of parameters for instanciated machine <ident mach>
	Wrong type for actual input parameters of called operation <ident op>
	Wrong type for actual output parameters of called operation <ident op>
	Wrong type for actual parameter <ident param> of machine <ident mach>
	Wrong type for expression <exp> in a CASE substitution

	Internal Error Messages
	Bad magic number for <ident mach>.nf
	Cannot load information file of component <ident mach>
	Wrong Normal Form format for the refined structure.

