
Teaching and Training in Formalisation with B

Thierry Lecomte1

CLEARSY, 320 avenue Archimède, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. Despite significant advancements in the design of formal inte-
grated development environments, applying formal methods in software
industry is still perceived as a difficult task. To ease the task, providing
tools that help during the development cycle is essential but proper edu-
cation of computer scientists and software engineers is also an important
challenge to take up. This paper summarises our experience of 20 years
spent in the education of engineers, either colleagues or customers, and
students, together with the parallel design and improvement of support-
ing modelling tools.

Keywords: B method, training, teaching

1 Introduction

Formal methods were developed to address software crisis by providing math-
ematically based techniques, including formal specification, refinement, proof,
and verification. In theory, we now know how to use formal notations to write
specifications and refine them gradually into a correct implementation, and use
logic to prove programs correct. However, none of these techniques is easy to use
by ordinary practitioners to deal with real software projects. The problem is the
complexity of implementing formal methods and the scarcity of skilled labour.
However, this difficulty can be alleviated by providing more suitable teaching
content[7] [10] [6] and tools that facilitate the implementation of formal meth-
ods.

This paper presents the experience collected during the last 20 years, training
(future) engineers to use the B method, while developing the IDE supporting
the B Method (Atelier B), using them (the tool and the method) for industry
strength projects (development, Verification & validation), and boosting their
dissemination in academia by providing specific hands-on teaching sessions.

The article is structured in 7 parts. Section 2 introduces the terminology. Sec-
tion 3 briefly introduces the main principles of the B method. Section 4 presents
how our training and teaching activities are structured. Section 5 describes our
teaching material. Section 6 presents the return of experience that we have col-
lected over the last 25 years, before concluding.

2 Terminology

This chapter clarifies a number of unusual terms and concepts used in this paper.

Atelier B is an industrial tool that allows for the operational use of the B
Method to develop defect-free proven software1.

B0 is a subset of the B language[2] that must be used at implementation
level. It contains deterministic substitutions and concrete types. B0 definition
depends on the target hardware associated to a code generator [4]. Most railways
product lines use their own own specific code generator.

CSSP abbreviates CLEARSY Safety Platform. The CLEARSY Safety Plat-
form is made up of a hardware execution platform, an IDE enabling the genera-
tion of diverse binaries from a single B model, and a certification kit describing its
safety features as well as the safety constraints exported to the hosting system.

Safety refers to the control of recognized hazards in order to achieve an
acceptable level of risk.

3 Introduction to the B Method

B[1] is a method for specifying, designing, and coding software systems. It covers
central aspects of the software life cycle (Fig. 1): the writing of the technical
specification, the design by successive refinement steps and model decomposition
(layered architecture), and the source code generation.

Fig. 1: A typical B development cycle, from requirements to code.

B is also a modelling language that is used for both specification, refinement
(Fig. 2), and implementation (Fig. 3). It relies on substitution calculus, first
order logic and set theory. All modelling activities are covered by mathematical
proofs that finally ensure that the software system is correct.

B is structured with modules and refinements. A module is used to break
down a large software into smaller parts. A module has a specification (called
a machine) where a static and a dynamic description of the requirements are
formalized. It defines a mathematical model of the subsystem concerned with:

– an abstract description of its state space and possible initial states,
– an abstract description of operations to query or modify the state.

1 https://www.atelierb.eu/en/atelier-b-tools/

This model establishes the external interface for that module: every implemen-
tation will conform to this specification. Conformance is assured by proof dur-
ing the formal development process. A module specification is refined. It is re-
expressed with more information: adding some requirements, refining abstract
notions with more concrete notions, getting to implementable code level. Data
refinement consists in introducing new variables to represent the state variables
for the refined component, with their linking invariant. Algorithmic refinement
consists in transforming the operations for the refined component. A refinement

Fig. 2: Structure of MACHINE and REFINEMENT components.

may also be refined. The final refinement of a refinement column is called the im-
plementation, it contains only B0-compliant models. In a component (machine,

Fig. 3: Structure of IMPLEMENTATION component.

refinement, or implementation), sets, constants, and variables define the state

space while the invariants define the static properties for its state variables. The
initialisation phase (for the state variables) and the operations (for querying or
modifying the state) define the way variables are modified. From these, proof
obligations are generated such as: the static properties are consistent, they are
established by the initialisation, and they are preserved by all the operations.
Atelier B contains a model editor merging model and proof by displaying the
number of proof obligations associated to any line of a B model, its current proof
status (fully proved or not) and the body of the related proof obligations.

Finally a B project is a set of linked B modules. Each module is formed
of components: an abstract machine (its specification), possibly some refine-
ments and an implementation. The principal dependency links between modules
are IMPORTS links (forming a modular decomposition tree) and SEES links
(read only transversal visibility). Sub-projects may be grouped into libraries. A
software developed in B may integrate or may be integrated with traditionally
developed code.

4 Training vs Teaching

Training and teaching are both aimed at delivering some pedagogical content to
an audience. However objectives and expectations may vary between these two
activities. This chapter presents the structure of these activities.

4.1 Training

As the software company responsible for the development of Atelier B, pro-
fessional training has always been a key activity, be it to train colleagues or
engineers from other companies. The objectives of the participants vary:

– [OBJ1] it may be to understand and analyse an existing B model when
accepting a deliverable provided by a third party. This is a strong regulatory
requirement when the deliverable contributes to a critical system. The need
is to be able to read the models, to determine which properties are expressed
and how they are distributed within the model.

– [OBJ2] The need is then to adapt a model without damaging the archi-
tecture. It is necessary to be able to write the required specifications and
implementations in a correct and efficient way without calling into question
the existing technical modelling choices. It is also necessary to preserve as
much as possible the mathematical proofs of the model.

– [OBJ3] It may be a case of building ex nihilo a complete model B which
corresponds to a given technical problem and which interfaces with particular
software components. It is then necessary to know how to specify efficiently,
how to distribute the processing within components and how to optimise the
proof work through levels of refinement.

– As the B-method is definitely proof oriented, it is obvious that a model has
to be developed in order to facilitate its proof. A model can be expressed in

many ways and some of them are more easily proved by a theorem prover.
[OBJ4] It is then necessary to have a deeper knowledge of automatic and
interactive proof tools, of their capacity to prove such or such mathematical
predicate.

Hence three training levels have been elaborated - ”Understand B”, ”Practice
B”, and ”Prove B” - to be practiced in this order and with some delay between
each training to let the modeller assimilate the new concepts and get used to
the technical environment.

”Understand B”, directly aimed at [OBJ1], is designed to help understand
the fundamental principles of the B Method and discover the B language. B is
introduced as a method of formal specification and design with proof, which can
go as far as the concrete level (with B0 language), and which offers formal spec-
ification and construction of a model by systematic description of its properties.
Notions of modularity and hierarchy are presented, as a B model is built in a
modular way, and its properties are introduced in a hierarchical way. Finally the
proof is briefly presented as a mean to ensure the respect of invariant proper-
ties as it ensures in an exhaustive way that the code is in conformity with its
specifications. To complete the picture, a description of the main uses of B in
the industry is given. In a second part, predicates, mathematical expressions,
and substitutions are all studied through their syntax and semantics, and imple-
mented in short examples (often one-liners). The three types of B components
(abstract machines, refinements and implementations) are presented. More than
half of the training is hands-on session using Atelier B as a platform for experi-
menting the modelling and the automatic proof in B. The session is made of 4
consecutive full days, with a maximum number of 10 trainees for 2 trainers. Re-
quirements for attending this training are a knowledge of the general principles
of the development cycle of a system or software, a basic knowledge of computer
science, and a mathematical knowledge at the level of a scientific baccalaureate.

”Practice B” covers both [OBJ2] and [OBJ3]. It is designed to help un-
derstand the principles of developing a B project, to practice building “good”
B models, and to understand B language advanced concepts. Developing a B
project requires to make clear the path leading from informal specifications to
formal specifications. It also requires to know the modular construction of a B
project and the various types of links between B modules, as well as the rules
governing these links. A first methodological base is proposed on which to build
a B project as an assembly of modules. The B model building practice is heavily
based on exercises where the formal significance of “complying with specifica-
tions” is explained and linked to the proof obligations obtained. The participants
are asked to create formal specifications on complete examples based on informal
requirements. The principles for drafting models facilitating proof are studied.
The session is similar to the ”Understand B” one. At least, one month of inten-
sive practice since ”Understand B” training is required to let the participants

increase their modelling skills.

”Prove B”, directly aimed at [OBJ4], is designed to help verify models with
proof, to understand how the automatic and interactive provers work. The veri-
fication activity relies on the use of an automatic prover to demonstrate most of
the obligations of correct proof, the examination of remaining proof obligations
to detect errors and the finalisation of the proof with the interactive prover. The
automatic prover is described as a collection of collaborating proof strategies
and mechanisms2. The main principles of the interactive prover are presented
together with its interactive proof commands. Several methodological recom-
mendations for a proper interactive demonstration allow to improve modelling
efficiency. The session is similar to the ones above. At least, several months of
intensive practice since ”Practice B” training is required to let the participants
increase their proof skills.

4.2 Teaching

Teaching at universities or engineering schools has a more pedagogical purpose
than in a company. It is about educating students and complementing their
ability to learn how to learn.

It uses a single resource base, which is made of:

– a presentation of the field of critical systems, which strongly recommends
the use of formal methods for the highest criticality levels. The regulatory
standards are introduced at this level.

– a presentation of the technical applications, the functions realised with the
formal methods and the safety and security levels achieved.

– a modular presentation of the development cycle, the language and the as-
sociated tools.

– a corpus of simple examples for learning the language and more complicated
(but simplified) examples from real systems.

The aim is to give students a formal touch, to teach them to model simple
properties and to get to grips with the proof tool. In some cases, the code
generation aspect is addressed. The teaching material is heavily based on the
training resources. However the requirements are much lower than in a company
and do not require a technical level to develop an industry-strength product.

5 Education material

Most of education has been completed with traditional means such as slides
for the 3 training levels 3 and books (pdf format) 4. Teaching slides are directly

2 The collaboration is static and has been designed decades ago to optimize proof
benchmarks.

3 https://b-method.gitbook.io/training-resources-for-atelier-b/b-training-
course/slides

4 https://github.com/CLEARSY/CSSP-Programming-Handbook

offered to the students before the lectures, but are not released publicly. Exercises
are completed on the blackboard or through computer manipulations.

Training ”Understand B” comes with several exercises:

– Specifying a resource management system (model and proof obliga-
tions). 5 services have to be formally specified from a natural language de-
scription. For example, let the fourth service be named ReleaseResource.
This operation takes a resource identifier rr as input, and may only be called
when rr belongs to RESOURCES and indeed to the subset in use as well. Its
effect is such as available becomes available with element rr included, and
in use becomes in use with element rr excluded. The resulting modelling is
as follows:

ReleaseResource(rr) = PRE

rr: RESOURCES &

rr: in_use

THEN

available:=available\/{rr} ||

in_use:=in_use-{rr}

END

– Simplified greatest common divisor. The exercise makes use of the in-
teger division to calculate the GCD of 2 positive integers that differ by no
more than 2.

– Batteries switch program. 3 switches controlling 3 batteries powering a
device have to be regularly controlled to avoid the same battery to discharge
during a too long period. Properties are defined by learners (no short-circuit,
power supply continuity) before their modelling.

– Detection of the presence of two numbers in a list. The exercise is
aimed at using bool(P) expression.

– Proving formal properties: quantified predicates, function structure, sim-
ple induction. Several kinds of proof are introduced: contradiction, general-
isation, and induction.

– Block: Building a Complete Software B Project. This software con-
trols a railroad line, divided into fixed blocks. The purpose of the function-
ality is to establish safely, from the software point of view, which blocks are
occupied by a train and which are free. Five different detectors are used but
they are not accurate enough at the borders and they may be faulty. The
project is made of 7 pre-existing components that need to be completed. For
example, the operation set block occupancy should establish that a block
having one of its border detector occupied or having its trackside detector
occupied has to be occupied. In B, <: is the ASCII representation for set
inclusion. A <: B means that the set A is included in the set B.

set_block_occupancy =

BEGIN

ob, tdl_alarm

:(

ob <: t_block &

tdl_alarm <: t_block &

d_b2b[obd] \/ otd <: ob

)

END

The exercise covers formal modelling of non-trivial properties5, specification
and implementation of operations, and provides a first experience of a multi-
component B project. Exercises are often selected as they address concrete,
well-known devices with a short specification, vague enough to generate dis-
cussion and to obtain various models.

Training ”Practice B” comes with several other exercises:

– Refinement principles. Refinement proof obligations are studied, in par-
ticular the ones related to a missing gluing invariant.

– Traffic light control system. This is the occasion to find properties for this
well-known system, from different points of view (safety, traffic-flow, end-
user, maintenance). Several subjects are treated: linkage with an external
environment, modular decomposition and maintainability.

– Implementation concerns. A collection of small examples related to en-
suring the absence of overflow, an explosion of proof obligations, the proof
of correctness for a simple loop, the SEES clause and avoidance of aliasing.
There is also an introduction to abstract iterators6 for loop.

cond, bl <-- iterate_t_block =

PRE

blocks_to_treat /= {}

THEN

ANY chosen_block WHERE

chosen_block : t_block_i &

chosen_block : blocks_to_treat

THEN

blocks_to_treat := blocks_to_treat - { chosen_block } ||

treated_blocks := treated_blocks \/ { chosen_block } ||

bl := chosen_block ||

cond := bool(blocks_to_treat /= { chosen_block })

END

END

END

5 Properties are not limited to typing. They require to use in combination diverse
expressions and operators like composition, relational image, reverse, intersection,
restriction in the domain, etc.

6 With abstract iterators, the loop is prepared from the specification level by sepa-
rating the iteration elements from the main substitution in a systematic way that
could be efficiently implemented with automatic refinement. In the example below,
t block i is the block super type.

– Formal proof. Several exercises to discover the proof activity: a proof of as-
sociativity (demonstration on paper then with the prover) and the language
of proof-rules (introduction to the training ”Prove B”).

– Modelling access to an island through a tunnel. Introduction to the
Event-B modelling.

Training ”Prove B” comes with a large collection of exercises, too large to
be listed individually:

– Modifying the model. Adding ASSERTIONS to a model to trigger sim-
plifications or proof mechanisms.

– Understanding proof commands. Introduction to most common inter-
active commands including Proof by cases, Set Solver.

– Adding user rules. Extend the mathematical rules database with user
rules (that need to be validated by the tool or manually).

– Ambiguity. Some operators like - or * have several meaning types (set,
integer). This ambiguity may block some simplification mechanisms. Adding
hypotheses could solve the problem (command ah - Add Hypothesis). In
the model below, assertions have to be demonstrated with invariant and
properties as hypotheses. Assertions are ordered: assertion in line 232 comes
as an hypothesis to assertion in line 233; assertions in lines 232 and 233 come
as hypotheses to assertion in line 234.

CONSTANTS

ii,jj

PROPERTIES

ii: NAT &

jj: NAT

ASSERTIONS

ii-ii = 0; /* ah(ii-ii = -ii+ii) */

ii+1-1 = ii; /* ah(ii+1-1 = -1+1+ii) */

ii*jj = jj*ii /* ar(CommutativityXY) */

END

These resources help understand the behaviour of the proof tool. Often the tool
leaves you in the middle of a proof tree and it is up to you to figure out what is
missing to continue/complete the proof. Directions are given to browse/discover
the rules database, to write mathematical rules and proof tactics.

To complement these online resources, new formats have been made available:

– videos 7 : several videos demonstrating how to use Atelier B and the CLEARSY
Safety Platform (CSSP).

– MOOC 8: 20 videos covering the basic aspects of B. The examples come
from [9]. 5 videos are related to B project management.

– self-training document (for colleagues only): a compilation of ”Under-
stand B” and ”Practice B” with a small number of exercises.

7 https://www.youtube.com/@atelierbclearsy
8 https://mooc.imd.ufrn.br/course/the-b-method

– Collections of models 9: a large number of models which allow the study
of different styles of modelling in B.

6 Return of Experience

This chapter summarises our activity and our findings accumulated since the
beginning of the training and teaching activity.

6.1 Activity

Training has been ensured during more than 25 years, mainly in Europe, for
an audience ranging from junior to senior engineers, project managers, safety
and security evaluators. Target industries include railways, smart card, auto-
motive, nuclear energy, and telecommunications. All objectives (from [OBJ1]
to [OBJ4]) have been addressed. Some participants followed the whole course,
most of them were involved only in the first two training levels. Some sessions
were specifically tailored for a particular kind of model or on an existing (dif-
ficult to complete or to maintain) B project. Indeed, some models are part of
a critical infrastructure and have a life span of several decades. It is therefore
necessary to maintain a level of competence that allows the associated software
to survive company turnover.

Teaching has been ensured at various occasions during the last 25 years, on
most continents: lectures in a university course, contribution to a doctoral school,
tutorial or dedicated workshop for scientific conference, invited presentation.
The duration varies from a few hours to 3 or 4 days, spread over a month. The
audience is quite often composed of students in the last year of their master.
The profiles varied greatly: future general engineers receiving an introduction
to formal methods, students with training in mathematics, computer science,
embedded systems or mechatronics, researchers, and teachers. The teaching has
happened either as a standalone lecture or to complement a (more theoretical)
lecture by a professor from the university or engineering school. In the latter case,
the course was often asked to emphasise the industrial use of formal methods,
with the course acting as a justification for academic teaching.

6.2 Feedback

Trainees vs students There is sometimes a huge difference between trainees and
students. In industry, training is either carried out to address technical difficulties
anticipated for the successful completion of a project, or is seen as a reward
for professional performance. In almost all cases, the trainee is attentive and
diligent during the training. This is not always the case for the student, for
whom participation in the course may be compulsory because it is linked to a
given curriculum whose content cannot be adapted. It therefore happens that the

9 https://github.com/hhu-stups/specifications/tree/master/prob-examples/B

behaviour of these two populations (engineers, students) diverges significantly
and that the students do not see the point of the course, even if industrial use
cases are used as course material.

Handling Abstraction Piaget[8] claimed that only one third of the population is
able to handle abstraction. This proportion is somewhat reflected in our courses
and training with:

– one or two people dealing with the questions faster than expected and getting
ahead of the group in the practical work. These people, when recruited, make
excellent practitioners;

– a first group understanding what is being done and why it is being done;
– a second group following the instructions given;
– a third group copying the results obtained by their peers or doing something

else.

It should be noted that being a software developer does not imply a facility
with formal modelling. Most developers do not have this ability, which is part
of the reason why formal methods have difficulty being adopted in the industry
when staff are selected solely for their availability and software skills. Our engi-
neers are tested when they are recruited to see which group they belong to so
that we don’t make the mistake of assigning them to tasks that they will find
very difficult to complete successfully.

Formal Models in Real Life Demonstrating the value of formal methods for soft-
ware development is difficult. You need to be able to learn and use a mathemat-
ical language effectively. It requires a willingness to make life difficult by adding
properties to the software before it is built. Agile methods and the prior devel-
opment of software demonstrators undermine this approach. Often the examples
presented in the courses are simple (or even simplistic) and do not necessarily
allow to apprehend the added value of formal methods. The industrial examples
are too large and confidential to be able to provide this insight and convince the
learners definitively. With the introduction of the CLEARSY Safety Platform
for education, it is possible to bring formal methods closer to the real world.
This programmable board allows to specify, implement, prove and execute con-
trol logic expressed with B that will interact with the outside world through a
simple interface (digital inputs and outputs). For students in formal methods,
it shows the concrete applicability of formal techniques to the real world. For
students in computer science and embedded systems, it allows them to verify
without testing a software development in exchange for an intellectual effort.

Teaching Proof is Difficult Proof has always been the stumbling block for teach-
ing B. It is rather easy to explain how to model behaviour and properties. It
is much more difficult to try to understand why certain points are not auto-
matically proven10. This understanding has to be done through the prism of

10 For cost reasons, the development of the core of the prover was frozen in 1998 to
avoid that prover evolutions generate regressions of proof. Indeed, to interactively

multiple proof tools (theorem provers, solvers, model-checkers), which requires
proven skills in mathematical proof (and an appetite for the subject). One must
be able to determine whether the lack of automatic proof is due to:

– a limitation of the tool - then one must determine whether to modify the
model to make it more provable by reformulating the properties and be-
haviour, or by using certain commands of the proof tool;

– a modelling error - then the model must be modified.

The proof activity is intimately linked to the modelling activity and to be effec-
tive must be carried out by the same person. The integration of the proof status
in the model editor (Fig. 4) allows the modeller to be aware of the complexity
of his modelling in terms of proof. This complexity could be quickly estimated
based on the number of proof obligations, their localization and their automatic
proof rate. The number of remaining proof obligations is a good measure of
the complexity of a model, that has to be confirmed by visual inspection. The
connection of Atelier B to external provers has and will improve the automatic
proof rate. The difficulty of proof is thus reduced but not eliminated.

Fig. 4: Atelier B model editor showing proof status.

Automating Refinement Refinement is at the heart of B. It is a hard point when
it comes to transforming non-trivial abstract structures and substitutions into
their implementation in one or more steps. The refinement techniques depend on

prove a proof obligation costs about 35 euros. The modification of the proof status
of an industrial project following the evolution of the prover could impact tens of
thousands of proof obligations and would not be acceptable to the industrialist.

the human modellers and their experience. For the development of the Meteor
metro safety automation, MATRA Transport[5] has developed and documented
refinement techniques to systematise their use. This resulted in an automatic
refinement tool that was later redeveloped for Atelier B. This tool (BART)
automates the refinement of a B machine, using an extensible base of refinement
rules and an inference engine to apply these rules to an abstract B model. The
tool refines the data and then the operations through a process:

– automatic: the engine applies its refinement rule base to the abstract model.
It stops when no rule can be applied to the structure/substitution being
refined.

– interactive: the modeller must therefore complete the refinement rule base
and then restart the automatic process. Refinement is complete when the
machine has been successfully transformed.

Neither the tool nor the rules are proven: if the refinement produced is incorrect,
it will not be provable. This tool was introduced in the mid-2000s in the hope
of making refinement more easily accessible. The expected effect has not been
achieved because in fact this tool, which allows the automation of a refinement
process, requires a great deal of expertise on the part of the operator, who must
know how to refine and model his knowledge in the form of rules.

7 Conclusion and Perspectives

Either training or teaching B are activities difficult to complete satisfactorily.
The subject (set theory, first order logic, refinement, proof, etc.) is difficult and
can only really concern a part of the audience. Our teaching resources have
been enhanced over 25 years to address primarily a professional audience and
therefore focus on the modelling of concrete problems/systems. In the meantime,
the supporting tools have been improved: the editor integrates proof information
while third party provers extend the proof system. New video-based resources
have been available while the animation (graphic or not) of models was promoted
[3]. Several on-going research projects are aimed at easing the proof process, to
make the B modelling more appealing:

– With the project AIDOART 11, Artificial Intelligence could ease the proof
process by suggesting proof tactics.

– With the projects BLASST 12 and ICPSA 13, third party provers / solvers
could improve proof performances.

One could also imagine having a Big Data based tool offering modelling
choices like copilot/Github using OpenAI. In fact, any technological innovation
that would simplify the application of the B-method would be welcome to pro-
mote learning.

11 https://www.aidoart.eu/
12 Enhancing B Language Reasoners with SAT and SMT Techniques
13 Interoperable and Confident Set-based Proof Assistants

Acknowledgements

The work and results described in this article were partly funded by ECSEL JU
under the framework H2020. as part of the project AIDOaRt (AI-augmented
automation supporting modelling, coding, testing, monitoring and continuous
development in Cyber-Physical Systems).

References

1. Abrial, J.: The B-book - assigning programs to meanings. Cambridge University
Press (2005)

2. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

3. Bendisposto, J., Geleßus, D., Jansing, Y., Leuschel, M., Pütz, A., Vu, F., Werth,
M.: ProB2-UI: A Java-Based User Interface for ProB, pp. 193–201 (08 2021)

4. Boulanger, J.: Formal Methods: Industrial Use from Model to the Code. Wiley
(2013)

5. Burdy, L., Meynadier, J.M.: Automatic refinement. In: FM’99 workshop – Applying
B in an industrial context : Tools, Lessons and Techniques, Toulouse, France,
Proceedings (1999)

6. Cataño, N.: Teaching formal methods: Lessons learnt from using event-b. In: Don-
gol, B., Petre, L., Smith, G. (eds.) Formal Methods Teaching. pp. 212–227. Springer
International Publishing, Cham (2019)

7. Istenes, Z.: Experiences of teaching formal methods in higher education. Formal
Methods in Computer Science Education (FORMED 2008) (2008)

8. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50, 36–42 (04
2007)

9. Schneider, S.: The B-method (Cornerstones of Computing). Macmillan Education
UK (01 2001)

10. Zhumagambetov, R.: Teaching Formal Methods in Academia: A Systematic Liter-
ature Review, pp. 218–226 (03 2021)

