ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341558235

Existence Proof Obligations for Constraints, Properties and Invariants in
Atelier B

Chapter - May 2020

DOI: 10.1007/978-3-030-48077-6_20

CITATIONS READS
0 92

3 authors, including:

David Déharbe
ClearSy System Engineering
114 PUBLICATIONS 940 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Machine assisted verification for proof obligations stemming from formal methods. View project

Project Automatic generation of tests for software component developed with the B method. View project

All content following this page was uploaded by David Déharbe on 15 June 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/341558235_Existence_Proof_Obligations_for_Constraints_Properties_and_Invariants_in_Atelier_B?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/341558235_Existence_Proof_Obligations_for_Constraints_Properties_and_Invariants_in_Atelier_B?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Machine-assisted-verification-for-proof-obligations-stemming-from-formal-methods?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automatic-generation-of-tests-for-software-component-developed-with-the-B-method?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Deharbe?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Deharbe?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ClearSy_System_Engineering?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Deharbe?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Deharbe?enrichId=rgreq-79010947e1b9c805ffddc7e4a5a809d8-XXX&enrichSource=Y292ZXJQYWdlOzM0MTU1ODIzNTtBUzo5MDI2MjE4MDgzMDQxMjhAMTU5MjIxMzIxNzI4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

®

Check for
updates

Existence Proof Obligations
for Constraints, Properties and Invariants
in Atelier B

Héctor Ruiz Barradas, Lilian Burdy, and David Déharbe®™

CLEARSY Systems Engineering, Aix-en-Provence, France
david.deharbe@clearsy.com

Abstract. Proof obligations of the B method and of Event B use
predicates in the Constraints, Sets, Properties and Invariant clauses
as hypotheses in proof obligations. A contradiction in these predicates
results in trivially valid proof obligations and essentially voids the devel-
opment. A textbook on the B method [3] presents three “existence proof
obligations” to show the satisfiability of the Constraints, Properties and
Invariant clauses as soon as they are stated in a component. Together
with new existence proof obligations for refinement, this prevents the
introduction of such contradictions in the refinement chain. This paper
presents a detailed formalization of these existence proof obligations,
specifying their implementation in Atelier B.

1 Introduction

The vaunted rigour of formal methods, such as B and Event-B, not only come
from the use of a formal notation, but also from the generation and subsequent
verification of proof obligations (POs). For instance, in Event-B [2], the model
of a system is considered sound only when all POs have been demonstrated. In
the B method [1], they guarantee that the refinement-based construction results
in implementations faithful to their specification.

Typically, POs are generated at key steps of the design process. Invalid POs
reveal errors in the source artefact. By inspecting these proof obligations, the
user then identifies, possibly, remaining errors and fixes the source artefact. The
process is repeated until all POs are discharged. To conduct the demonstrations,
these methods demand that they are conducted with tools. In practice, this is
accomplished by a mix of automatic proof and interactive proof. POs are thus
the cornerstone of every such formal development.

A PO has the form H + G, with H a set of hypotheses, and G the goal.
Its validity may stem from a contradiction in H, i.e. have nothing to do with
the goal. In the context of B and Event-B, a component with contradictory
hypotheses in its POs will be (trivially) correct. In large developments, a contra-
diction may stay undetected. B addresses this issue with POs associated at the
implementation level, i.e. at the very end of the development. At that point, this
requires fixing the refinement chain up to the source of the contradiction, which

© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 255-259, 2020.
https://doi.org/10.1007/978-3-030-48077-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-48077-6_20

256 H. Ruiz Barradas et al.

is costly. Also, components in a B project that do not have an implementation
(e.g., foreign interfaces) are not protected. Event-B does not fully address this
issue.

Such situations can be easily avoided by adding so called “existence” POs
whenever a contradiction may be introduced. An existence PO has the form
I' = 3V - (¢), where I' is the context predicate, ¢ the predicate that shall not
be contradictory, and V' a list of identifiers. A textbook on B [3] presents these
POs, but without considering component visibility, inclusion and refinement.
Existing tools for B and Event-B do not generate these, and we decided to add
it to Atelier B. We present the formalization of the POs for the specification
(Sect. 2) and the refinement (Sect.3) levels. We discuss the case of standalone
components, and generalize to components with dependencies.

2 Existence Proof Obligations in Specifications

Ezxistence for Parameters. In B, specification components may have sets and
scalar parameters. The CONSTRAINTS clause can be used to constrain these
parameters. When the machine is instantiated, a PO asks to prove the establish-
ment of the CONSTRAINTS clause, thus guaranteeing the absence of contradic-
tions. If the parametrized machine is not instantiated, the CONSTRAINTS clause
can contain undetected contradictions because no PO exists to detect them. Let
p denote the parameters, C the predicate in the constraint clause, the existence
PO given by [3] for parameters is 3p - C. It has been implemented as such in
Atelier B.

Existence for Sets and Constants. The PROPERTIES clause state constraints on
sets and constants declared respectively in the SETS and CONSTANTS clauses.
Enumerated sets have a single possible valuation, and abstract sets must satisfy
the implicit constraint that they are finite non-empty sets of integers. In this
way, in order to prove the absence of contradictions in the predicate P of the
PROPERTIES clause of a single machine, with no seen or included components,
we define the following PO: e_sets = 3(c, s) - (P A a_sets), where e_sets is the
conjunction of declarations of enumerated sets in the SETS clause, c is the list of
abstract and concrete constants, s is the list of abstract sets, and a_sets is the
conjunction of predicates t € FIN,(INTEGER) for each variable ¢ in s. Notice
that the visibility rules of the language prohibit parameters in the predicate P,
so it is useless to have predicate C' as an antecedent.

If there are seen components in the machine, the predicates in the PROP-
ERTIES clause from the seen components and their included components are in
the antecedent of the PO. Moreover, for each abstract set u declared in the seen
machine or declared in a machine included by the seen machine, the antecedent
of the PO contains a predicate u € FIN,(INTEGER). The definition of each
enumerated set w declared in these machines is also in the antecedent.

If the machine includes components, the definition of their enumerated sets
are in the antecedent of the PO, their abstract and concrete constants and the

Existence Proof Obligations for B and Event-B 257

identifiers of their abstract sets are existentially quantified in the consequent
and the predicates of their PROPERTIES clauses, together with the corresponding
a_sets predicates, are in the body of the existential quantifier.
Following is an example of the existence PO for the SETS, CONSTANTS and
PROPERTIES clauses for a standalone component:
PO:
SETS
S1; 52 ={UM, DOIS, TRES};

53— (UN, DEUX) S2 = {UM, DOIS, TRES} A

$3 = {UN, DEUX}

CONSTANTS N
cl,el,e2,e3 3(cl, el,e2,51) - (
PROPERTIES

S1 € FIN(INTEGER) — {{}} A
cl € NAT Nel € INT A

e2€ S2Ne3 € S1TA

(2= UM = el =1))

cl € NAT Nel € INT A
e2e€ S2Ne3 € S1A
(e2=UM = el =1))

Existence for State Variables. The predicate invariant may also contain con-
tradictions. To prevent this, the existence PO of the INVARIANT clause for a
standalone machine is C' A P A all_sets = 3(v) - (I). The antecedent of this
PO contains the predicates C' and P from the CONSTRAINTS and PROPERTIES
clauses. The predicate all_sets is the conjunction of e_sets and a_sets seen above.
The quantifed variable v denotes the list of abstract and concrete variables of
the machine.

If there are seen or included components, the antecedent is strengthened
with the conjunction of their properties, assertions, invariants and their all_sets
predicates. In this conjunction, we also consider the clauses of the components
possibly included by the seen machines. Moreover, for the included components,
the consequent of the PO quantifies over their variables and invariants.

3 Existence Proofs in Refinements

Refinement in B or Event B is used for stepwise development. Refinement POs
are designed to be monotonic: If a component S is refined by a component T,
these POs guarantee that the invariant of S is also preserved by operations in 7T'.
However, existence POs in a refinement are not monotonic in that sense. When
an abstract constant or variable is refined by a concrete one, we still need to
prove that the properties or invariants specified in the abstraction hold in the
refinement.

Exzistence for Sets and Constants. For a refinement with no seen or included
components and no seen or included components in any of its abstractions, the
existence PO is intended to avoid contradictions in the predicate P of the PROP-
ERTIES clause of the refinement and all properties of the previous refinements,
denoted by the following predicate:

258 H. Ruiz Barradas et al.

e_sets N abs_e_sets = I(c,cq, 8, 84) - (P A a_sets N abs_P N abs_a_sets)

The predicates e_sets and a_sets are defined as before, abs_e_sets denotes the
conjunction of declarations of enumerated sets, and abs_a_sets denotes the con-
junction of ¢ € FIN,(INTEGER), for abstract sets ¢ in previous refinements.
Predicate abs_P is the conjunction of the properties predicates in the previous
refinements. The variable lists ¢ and s contain the constants of the refinement
and its abstract sets. Finally, the lists ¢, and s, denote all constants and abstract
sets in previous refinements. If the refinement or any of its abstractions contains
seen or included components, the antecedent and the consequent are strength-
ened with the clauses of these components as it was done in the corresponding
PO of the specification.

Ezxistence for State Variables. The corresponding PO defined for specification
components guarantees the absence of contradictions in the invariant. Also, the
PO of the establishment of the invariant by the initialization Init, guarantees
the existence of values of the abstract variables v, satisfying the abstract invari-
ant I(vg). The PO of the refinement of Init, by the initialization of a refined
component Init. is not sufficient to guarantee the absence of contradictions in
the refined invariant J(v.,v,). Therefore, in order to prove the absence of con-
tradictions in the invariant J(v.,v,) we need to show that the assignment of
some concrete values v to the concrete variables v, is a refinement of Init,. For-
mally this refinement is stated by Jv - ([ve := v]=[Init,]—J which must be proved
under the context of the refinement. After simplification, the existence PO for
a standalone refinement and only standalone components in its abstractions is
defined as follows:

C A P A all_sets A abs_all_sets N\ abs_P = 3(v.) - (=[Inity]—J)

where abs_all_sets is the conjunction of predicates all_sets of previous refine-
ments, v, is the list of abstract and concrete variables of the refinement and J
is its invariant.

If there are seen or included components, the antecedent and consequent of
the PO are strengthened with the corresponding clauses of these components.

4 Conclusion

This paper presents details of the generation of existence POs for the formal
methods B and Event-B. These POs detect inconsistencies that would make
trivial, but useless, the correctness of the components, as soon as they are intro-
duced in the development. Their generation has been implemented and will be
available in a future release of Atelier B.

Existence Proof Obligations for B and Event-B 259

References

1. Abrial, J.-R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R.: Modelling in Event-B, System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Schneider, S.: The B-Method. Macmillan International, New York (2001)

https://www.researchgate.net/publication/341558235

	Existence Proof Obligations for Constraints, Properties and Invariants in Atelier B
	1 Introduction
	2 Existence Proof Obligations in Specifications
	3 Existence Proofs in Refinements
	4 Conclusion
	References

