
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221187253

A hardware/software codesign framework for developing complex embedded

systems using formal model refinement.

Conference Paper · January 2004

Source: DBLP

CITATIONS

0
READS

166

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Enable-S3 View project

AMASS - Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems View project

Colin Snook

University of Southampton

138 PUBLICATIONS 1,521 CITATIONS

SEE PROFILE

Stefan Hallerstede

Aarhus University

79 PUBLICATIONS 1,743 CITATIONS

SEE PROFILE

Thierry Lecomte

ClearSy System Engineering

54 PUBLICATIONS 418 CITATIONS

SEE PROFILE

All content following this page was uploaded by Stefan Hallerstede on 19 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221187253_A_hardwaresoftware_codesign_framework_for_developing_complex_embedded_systems_using_formal_model_refinement?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221187253_A_hardwaresoftware_codesign_framework_for_developing_complex_embedded_systems_using_formal_model_refinement?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enable-S3-3?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AMASS-Architecture-driven-Multi-concern-and-Seamless-Assurance-and-Certification-of-Cyber-Physical-Systems-4?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Snook?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Snook?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Southampton?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Colin-Snook?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan-Hallerstede?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan-Hallerstede?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aarhus-University?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan-Hallerstede?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ClearSy_System_Engineering?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan-Hallerstede?enrichId=rgreq-f72135d66a26308a0ca73d01cf1fdffe-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE4NzI1MztBUzo5ODYwNTg4MDg0MDE5M0AxNDAwNTIwODgyMzEz&el=1_x_10&_esc=publicationCoverPdf

A hardware/software codesign framework for
developing complex embedded systems using formal

model refinement ∗

N. S. Voros
INTRACOM S.A.

254 Panepistimiou str., 26443
Patra, Greece

C. F. Snook
School of Electronics and

Computer Science
University of Southampton
Zepler Building, SO17 1BJ

United Kingdom

S. Hallerstede
KeesDA S.A.

Parc Equation, 38610 Gieres
France

T. Lecomte
ClearSy S.A.

Europarc de Pichaury 13856 Aix en Provence
France

Abstract

The approach proposed in this paper introduces a hardware/software codesign framework
for developing complex embedded systems. The method relies on formal proof of system
properties at every phase of the codesign cycle. The key concept is the combined use of
UML and B language for system modeling and design, and the seamless transition from
UML specifications to B language. The final system prototype emerges from correct-by-
construction subsystems described in B language; the hardware components are translated
in VHDL/SystemC, while for the software components C/C++ is used. The outcome is a
formally proven correct system implementation. The efficiency of the proposed method is
exhibited through the design of a case study from the telecom domain.

1 Introduction

Modern electronic systems tend to become more and more complex, supporting a range of
functions in hostile environments like automobiles, railways and airplanes. The advent of such
systems in more and more applications has led to a new category of systems called SoCs (Systems-
on-a-Chip). The increasing competition and the market pressure have created the need for
products of high reliability with short time-to-market. Thus, traditional development techniques,
where the system development was relying on the experience of highly qualified engineers, are
no longer adequate. The complexity of modern systems requires methodologies and supporting
tools to deal with the increasing market requirements.

In this context, the next paragraphs introduce a codesign approach where system proper-
ties are formally proven throughout system design. The proposed codesign approach relies on

∗This work has been performed in the framework of the IST project PUSSEE (IST-2000-36103). The PUSSEE
project is partly funded by the European Commission. The authors would like to acknowledge the contributions
of their colleagues from AB Volvo (Sweden), Nokia Corporation (Finland), Intracom S.A. (Greece), ClearSy S.A.
(France), University of Southampton (United Kingdom), KeesDA S.A. (France) and University of Paderborn
(Germany).

1

the combination of UML and B language, and is supported by appropriate tools enabling the
seamless use of the two languages.

The rest of the paper is organized as follows: Section 2 presents the rationale of the pro-
posed framework, while Section 3 explains its key concepts. In Section 4 the method toolset is
described, and in Section 5 a real world case study is presented. Finally, Section 6 concludes by
presenting an overview of the main paper concepts and future work.

2 Rationale & existing work

The main idea described in the next sections is to produce fully functional system models that
are formally proven to be correct, and based on them to produce automatically the hardware
and the software parts of the system. The approach presented relies on the combined use of
UML and B language.

The UML [1] is a visual object oriented modeling notation for object oriented systems.
Translation to a formal notation that has adequate tool support, such as B [2] enables a model to
be formally verified. Formal models are also amenable to animation which allows early validation
of requirements. These verification and validation processes are not available in the UML even if
annotated constraints are added in the UML constraint language, OCL [3]. However, translation
from unrestricted UML models is problematic because B language is not object oriented and
contains write access restrictions between components in order to ensure compositionality of
proofs. There are several approaches reported for mapping between UML to B language, e.g. [4].
The key difference in our approach is that we specialize UML in order to ensure that the resulting
B is amenable to verification. To overcome write access restrictions we provide a translation
from many classes (a package) to a single B component. We also provide UML mechanisms to
support an event style of modeling and decomposition by supporting translation to a variant of
the B language called Event B [5].

The use of B language for designing complex systems has already been reported in litera-
ture [6, 7]. As opposed to them, the approach presented in this paper proposes the use of B
language as part of a unified hardware/software codesign framework that supports formal proof
of system properties throughout the various codesign phases.

For the design of hardware system parts, the B language has been applied to circuit de-
sign. In [8], Event B is used to specify and refine a circuit but the approach does not provide
a translation into a hardware description language. We have extended their work in Event B,
while we have developed and used a BHDL (B-to-Hardware Description Language)1 translator
to generate SystemC and VHDL. The approaches in [9, 10] model circuits close to an imple-
mentation level. The first one requires that the model uses basic logic gates which are modeled
in terms of B machines; the second one allows higher data types like integers in their models,
while it introduces new structuring mechanisms into B which mirror those of VHDL closely. Our
approach differs from all three in that it does not use an explicit representation for the system
clock.

3 Proven electronic system design using formal proof of system
properties

The approach presented in this paper is outlined in Figure 1. The main design phases of the
proposed framework are described in the sequel.

System Modeling using a graphical formal notation. For that purpose a specialized profile of
1BHDL is a trademark of KeesDA S.A.

Figure 1: An overview of the proposed codesign framework

UML, called the UML-B profile, has been defined in order to allow designers to employ UML for
defining system models and their properties during early design stages (upper part of Figure 1).
The outcome of this process is a set of system models that contain formal descriptions of system
properties in a B compliant manner.

Formally proven to be correct refinement where the initial system is gradually refined and
each refinement is proven to be correct. The latter is guaranteed through the discharge of all
the proof obligations generated (each proof obligation represents a system property that must
not violated during refinement).

System decomposition into subsystems. Each subsystem can be mapped either to hardware or
to software. At a specific refinement level, where the system representation is accurate enough,
the system is decomposed into subsystems. The emerging subsystems and the communications
between them are described in Event B and are produced automatically. Each subsystem can
be further refined until a fully functional subsystem is reached.

Hardware/software allocation (lower part of Figure 1) takes place through direct translations
of subsystems using appropriate translators. The software parts are implemented in C/C++,
while the hardware parts of the system are described in VHDL/SystemC. It is important to
mention that in both cases, the code produced stems from system models that are formally
proven to be correct.

During the last stages of system design, the subsystems produced are simulated together in
order to verify their integrated behaviour, while the overall system performance is evaluated.
Based on the performance evaluation results, alternative architectures can be explored.

4 The supporting toolset

The codesign framework proposed is supported by a set of tools that allow system designers to
produce systems that are composed of correct-by-construction subsystems. The tools cover all
the codesign stages from specification down to implementation.

4.1 U2B translator

The U2B translator [11] converts UML-B models into B components. Translation from UML-B
into B is necessary to gain access to other tools in the toolset.

In many respects B components resemble an encapsulation and modularization mechanism
suitable for representing a class. However, to ensure compositionality of proofs, B imposes re-
strictions on the way variables can be modified by other components (even via local operations)
leading to corresponding restrictions on the relationships between classes. Only hierarchical
class association structures could be modeled using this translation. A second option translates
a complete UML package (i.e. many classes and their relationships) into a single B component.
The instances, attributes, associations and operations of the classes are represented in the same
way but are collated into a single B component. This option allows unconstrained class rela-
tionship structures to be modeled but no operation calling is possible because all operations are
within the same B component (a further restriction for proof reasons). However, if we view the
operation bodies as declarative specifications of behaviour and defer design issues, such as how
that behaviour is allocated to operations, this is not a severe restriction on the UML modeling.

Since B language is not object oriented, class instances must be modeled explicitly. Inher-
itance may be used to define the instances of a class as a subtype of another class. Attributes
and associations are translated into variables whose type is a function from the class instances
to the attribute type or associated class. For example a variable instance class A with attribute
x of type X would result in the following B component:

MACHINE A CLASS
SETS A SET
VARIABLES A, x
INVARIANT A : POW(A SET) & x: A → (X)
INITIALISATION A := {} || x := {}
...

The multiplicity of an association determines the type of function (partial, total, injection,
surjection or bijection) used in its modeling. Attribute types may be any valid B expression
that defines a set.

UML-B clauses are used to attach constraints to UML entities. For example, a UML-B
clause, INSTANCES, may be used to define the instances of a class as an enumerated set.
UML-B clauses can also be attached to other modeling entities such as states in a statechart. If
a package component mapping is used, UML-B clauses that apply to the complete package may
be used.

The behavior modeled on a class diagram is given by the specification of operations and
invariants. Since we wish to end up with a B specification we use a notation based on B for
these constraint and action definitions. To B, we add the object oriented conventions of implicit
self referencing and the use of the dot notation for explicit instance references. This is illustrated
in the examples below.

Figure 2: Translation of operations

Invariants may be specified in a UML-B clause attached to the relevant UML entity. Where
applicable, U2B will automatically add universal quantification over all instances of a class or a
hypothesis to complete the invariant.

Operations need to know which instance of the class they are to work on (’self’). The
translation adds a parameter thisCLASS of type CLASSinstances to each operation. This is
used as the instance parameter in each reference to an attribute or association of the class.
However, in event systems, operations represent events that occur rather than called operations.
Hence, events cannot have parameters. Therefore if a class operation has parameters (including
’self’) they are translated into a non-deterministic selection substitution such as:

ANY thisCLASS, p1 WHERE
thisCLASS: <class instances> & p1: <type>

THEN ...’.

For event systems, operation guards and actions are specified either in a textual format
attached to the operation, on the transitions of a statechart attached to the class or by a
combination of both composed as a simultaneous specification.

In the example in Figure 2, set y might have the following precondition and semantics, which
would be translated as shown in the right hand column:

Precondition SELECT
i > y.bx i > bx(y(thisA))

Semantics THEN
y.b op(i) || b op(y(thisA)) ||
IF y.bx<100 THEN IF bx(y(thisA))<100 THEN

out:=FALSE out:=FALSE
ELSE ELSE

out:=TRUE out:=TRUE
END END

END

Statechart Behavioral Specification

A statechart representation of behavior may be used. The U2B translator combines the
behavior described by a statechart with any textual operation semantics. The collection of
states in the statechart is used to define an enumerated set that is used in the type invariant of a
state variable. The state variable is equivalent to an attribute of the class and may be referenced
elsewhere in the class and by other classes. Statechart transitions define which operation call
causes the state variable to change from the source state to the target state. To associate a
transition with an operation, the transition’s name must match the operation name. Additional
guard conditions can be attached to a transition to further constrain when it can take place.
All transitions cause the implicit action of changing the state variable from the source state to
the target state. Additional actions can also be attached to transitions. The translator finds all
transitions associated with an operation and compiles a SELECT substitution of the following
form:

SELECT statevar=sourcestate1 & transition1 guards
THEN statevar:=targetstate1 || transition1 actions
WHEN statevar=sourcestate2 & transition2 guards

THEN statevar:=targetstate2 || transition2 actions
etc
END
|||
<textual operation specification>

Refinement

UML-B defines a ”REFINES” relationship between packages. The B component produced
from a package, Rn+1, that refines a package, Rn, will be a refinement instead of a machine and
will have a ”REFINES Rn”clause. If variables in Rn+1 have the same names as those in Rn, B will
assume that they are the corresponding refined versions of the abstract variables. Note however,
that the UML representation of the variable could be very different in the refining package from
that in the refined package. For example, the state variable defined by a statechart could be
the refinement of a class attribute. Where the variables have different names (and possibly not
a one-to-one refinement relationship) a gluing invariant must be specified in the refining class.
This must be given in an INVARIANT clause within the refining package (or one of its classes).

Figure 3: System decomposition and hardware/software allocation

4.2 Atelier B

The use of B language for describing and proving system properties between successive model
refinement is crucial for the specific approach. The total number of proofs required, even for
small systems, is usually big and difficult to handle without the support of an appropriate tool.

For the automation of proving process Atelier B2 tool is employed. It is mainly composed
of static analyzers that including (a) a type checker, which is responsible for the syntactic and

2Atelier B is a trademark of ClearSy S.A.

the semantic verification of a B component, (b) a B0 checker, which performs verification of
system models described in B0 language3 [2], and (c) the project verification analyzer which
performs global verifications among system components in order to control the overall system
architecture.

Additionally, Atelier B includes proof tools that allow formal proof of the successive B model
refinements, where the proof obligations required can be proven either automatically or inter-
actively. More specifically, the proof tools available from Atelier B include: (a) The automatic
generator of proof obligations from the components in B, (b) the rule base manager (the rule
base includes more than 2200 rules), (c) the automatic prover which discharges automatically
most of the proof obligations, (d) the interactive prover which is used when the automatic prover
has failed and (e) the predicate prover which demonstrates rules added by the user. Finally,
Atelier B supports translation of B implementations to C/C++ for the software parts of the
system under development.

4.3 Decomposition assistant

The decomposition assistant4 automates the decomposition process [12] outlined in Figure 3.
Decomposition is precisely the process by which a certain model can be split into various com-
ponent models in a systematic fashion. As a result, the complexity of the proving process is
reduced while the emerging subsystems can be implemented using different technologies. The
communication among the components is automatically generated by the decomposition assis-
tant. Communication consistency is based on the exchange of events among the subsystems and
can be formally refined until the final communication scheme is reached.

Figure 4: Communication between subsystems, as it is generated by the decomposition assistant

As described in Figure 4, during the decomposition process each variable is allocated to one
and only one subsystem and references in other subsystems are copies that need to be updated.
The lower part of the figure describes the modules generated by the decomposition assistant: SS1
and SS2. ISS1S2, which contains the communication primitives between the two subsystems,
can be further formally refined in order to reach a fully functional protocol implementation.

System decomposition [14] is based on a decomposition profile defined by the designer. De-
composition assistant uses the decomposition profile as input and automatically produces the
description of each subsystem along with the variables required for describing the selected com-

3B0 is a subset of B language, which is used only in implementations to ensure that they can be directly
translated in C/C++.

4The decomposition assistant has been developed by ClearSy S.A. in the context of IST PUSSEE Project [13].

tr(x := E) = x ⇐ E;
tr(S||T) = block begin tr(S)tr(T) end block;
tr(S;T) = block signal y : typey; begin

[y′ := y′′]tr(S)
[y := y′′]tr(T)
end block;

Table 1: VHDL Translation rules

munication scheme. Reuse of formally proven protocol descriptions through a protocol library
is also applicable.

4.4 BHDL translator

The BHDL subset of the B language is similar to traditional (procedural) B. Structurally the
main differences are the presence of input and output for a module, and the restriction of the
operation clause to one substitution. Variables of BHDL machines are split into the categories
INPUTS, OUTPUTS, and VARIABLES. The first two, the ports of the design, are externally
visible with the obvious meaning. The other variables are local to the design. The OPERATION
clause of a BHDL machine contains a single substitution describing the behavior of the design.
Type and constant declarations may not be made in this kind of BHDL machines. They must
be made in dedicated BHDL machines. This facilitates porting to different target languages.

BHDL data types are restricted to BOOL, INTn, and UINTn. In addition, enumeration
types can be used and arrays. These types are contained in a basic BHDL machine, called
BHDL.mch that must be imported in BHDL machines. In SystemC the types correspond to
bool, sc int<n>, sc uint<n>, and enumeration types and arrays. This choice of data types
facilitates portability to other hardware description languages. Arrays are represented as total
functions in BHDL and may not be synthesizable after translation. If the design resulting from
translation has to be synthesizable, it may be necessary to modify the design first by refinement.
For simulation, however, this is not necessary. In practice, we found that most produced VHDL
descriptions were readily sythesizable.

The substitution language of BHDL is a subset of the substitution language of B. BHDL
machines are cycle accurate models of hardware which can be represented by a design on reg-
ister transfer level in hardware description languages like VHDL or SystemC. In fact, register
transfer level is not strictly enforced because some BHDL constructs and expressions correspond
to the behavioural level. This is convenient for simulation. For performance analysis, a higher
abstraction level (and earlier translation in the design process) would be useful. This work is
under way for the transaction level of SystemC. The substitution language of BHDL comprises
assignment “x := E”, simultaneous substitution “S||T”, sequential substitution “S;T”, and con-
ditional substitution“IF B THEN S ELSE T END”. Arrays can only be assigned as a whole, i.e.
assignments of the form “x(k) := E” are not possible. The reason is that tracking intermediary
signals created in the translation would be complex and error prone, whereas the price of the
incurred restriction in practice is very low. In this article we use lambda expressions to represent
array values. So an array assignment has the form: “x := k.(k ∈ K|E) ∪ k.(k ∈ L|F)”, where
dom(x) = K ∪ L. The right-hand side may contain more than two lambda expressions.

Registers are inferred from variables declared in the VARIABLES clause of a BHDL machine
depending on their use. Two sets read and write are calculated for a BHDL machine. Inputs
declared in the machine must be contained in read, outputs in write. Variables that are con-
tained in read and write are translated into registers. Input and output variables are translated
into corresponding ports, and all remaining variables into wires.

Formally the translation into hardware description languages tr(S) of S is based on the

MACHINE
DELAY

SEES
BHDL
INPUTS
din
OUTPUTS
dout
VARIABLES
quadneg , buffer
INVARIANT neg ∈ UINT4 ∧ buffer ∈ 1 ..8 → UINT4
INITIALISATION
buffer := λx .(x ∈ 1 ..8 |0)
OPERATION
BEGIN
neg := 15 − buffer(1);
dout := neg
END||
buffer := λx .(x ∈ 1 ..7 |buffer(x + 1)) ∪ λx .(x ∈ 8 |din)
END

Figure 5: BHDL machine

before-after predicate prdx(S) of a substitution S. For assignment in VHDL, simultaneous and
sequential substitutions are described in Table 1 [15].

process (clock, reset) begin
if reset =′ 1′ then
for k in 1 to 8 loop
buffer0(k) ← 0;
end loop;
elsif clock′EVENT and clock =′ 1′ then
buffer0 ← buffer1;
end if;
end process;

Figure 6: VHDL description of a register

Identifiers clock and reset must not be used in BHDL machines. Correspondingly named
signals for use with registers are produced by the translation. Figure 5 shows a B implementation
of a buffer that delays its input by 8 clock cycles. Variable buffer is initialized to an array of
zeros. The translation generates a set of registers with reset for variable buffer (see Figure 6).

The state transition specified by the substitution is translated into a combinatorial circuit.
We have left away the block statements to save space. Inputs and outputs are referred to by
their original names. Signal names ending in n, with n > 1, refer to intermediate signals; suffixes
0 and 1 are used to model registers as shown above. The design shown in Figures 6 and 7 is
sythesizable. Thus, so is the original BHDL machine in Figure 5 from which the VHDL code
was produced by automatic translation. The BHDL machine could be further refined, e.g. by
implementing the subtraction on bit level. In general, we prefer to allow as many high level
constructs as possible, to allow earlier translation and analysis in the development process. For
this reason we are also working on a translator to SystemC transaction level.

neg2 ← 15 − buffer(1);
dout ← neg2;
process (buffer0,din0) begin
for x in 1 to 7 loop
buffer1(x) ← buffer0(x + 1);
end loop;

Figure 7: Combinatorial part of design

5 Case study: Specification and design of a telecommunication
application

HIPERLAN/2 protocol [16] provides data rates of up to 54 Mbits/sec for short range (up to
150m) communications in indoor and outdoor environments. Typical application environments
are offices, homes, exhibition halls, airports, train stations and so on. Figure 8 outlines the
protocol architecture.

Figure 8: An overview of HIPERLAN/2 architecture

The system under design is part of the access point system and consists of the AP scheduler
and the modem. The next paragraphs describe the design of the specific case study following
the primitives introduced in the previous sections.

5.1 System specification using UML-B profile

In Figure 9 part of the overall system specification using UML-B profile is presented and cor-
responds to the SCH box depicted in Figure 8. The main parts of the Access Point Sched-
uler [16] include: AP SCHEDULER which is responsible for the design of a MAC frame; TRAF-
FIC TABLE that describes the next frame’s logical channel entries required, according to the
resource requests; FRAME INFO that decides the number of information elements (IEs) and
the number of blocks required (each block contains three IEs, the number of idle IEs and the

number of padding IEs); DECISION module that contains the decision algorithm used and FCH
that contains the resource grants for the FCCH channel.

AP SCHEDULER 1 is a formal refinement of the initial AP SCHEDULER. The ”imports”
arrows refer to the corresponding keyword of B language and represent B modules containing
part of AP SCHEDULER functionality.

Figure 9: Description of HIPERLAN/2 Access Point scheduler using UML-B profile

5.2 Formally proven model refinement

In order to formally prove the correctness of the specific refinement, we used the U2B trans-
lator and Atelier B. Figure 10 delineates the B code produced by U2B translator for the
AP SCHEDULER class. AP SCHEDULER 1 class was also translated to B and the required
proof obligations for the specific model refinement were generated using Atelier B.

The the refinement process revealed 3.353 proof obligations; 3.106 of them (92,6%) were
automatically proven using Atelier B’s automatic prover, while 247 proof obligations (7,4%)
were proven using the interactive prover of Atelier B.

A similar process was followed for the rest of the system, including the modem part described
in Figure 8. A fully implementable system model, described in UML-B profile, was finally
produced where all the generated proof obligations were fully discharged.

5.3 System decomposition

Having a fully functional system description that was formally proven to be functionally correct,
the next step was to use the decomposition assistant described in Section 4.3 to produce the
hardware and the software subsystems. Part of the decomposition profile used is presented
in Figure 11. This profile contains the number and the names of the subsystems specified by
the designer, as well as variable allocation. Communication is deduced from that description,

using the default communication protocol for accessing data. These communication protocols
are likely to be extended.

Figure 10: The initial B code produced for the AP SCHEDULER

The system under design was decomposed in two subsystems: SS SCH subsystem which
corresponds to the functionality of the system UML-B model of Figure 9, and the SS MODEM
subsystem which contains the part of the initial system that contains the HIPERLAN/2 modem
functionality.

5.4 Hardware/software allocation & implementation

The final step of the design process was the hardware/software allocation and the generation of
final code. The final realization for the SS SCH subsystem was implemented in software. More
specifically, 2.291 lines of C code were generated using Atelier B’s C code generator and the final
software has been tested on ARM7 TDMI.

The SS MODEM subsystem was implemented in hardware. For the hardware description
BHDL translator was used in order to produce VHDL code from the available formally proven
description.

6 Conclusions & Future work

In the previous sections we presented a detailed description of a hardware/software codesign
approach for developing correct-by-construction embedded systems. The method introduced
relies on formal refinement of system models, using a combination of UML and B language. The
final system consists of formally correct implementations of C/C++ for the software parts and,
VHDL or SystemC descriptions for the hardware components.

One important topic not covered in this paper is the formal proof of real time properties
during system design, which is fully addressed in [17]. Additional improvements include further
development of the UML-B profile and corresponding updates to the U2B tool5. A version
is being produced that accepts XMI [19] as input and is independent of any particular UML

5The current version runs as a script within Rational Rose [18].

Figure 11: The decomposition profile for the telecom case study

tool, and will run within the Eclipse [20] open development platform. This will enable better
integration of U2B with the B proof tools, which are also being ported to Eclipse. Finally, it is
planned to extend the BHDL translator to higher level descriptions of circuits. It is expected
that this combined treatment will also allow us the automation of many steps in lower level
refinements.

References

[1] J. Rumbaugh, I. Jacobson & G. Booch, The Unified modeling Language Reference Manual,
Addison-Wesley, ISBN 0-201-30998-X, 1998.

[2] J-R. Abrial, The B Book: Assigning programs to meanings, Cambridge University Press,
1996.

[3] J. Warmer, A. Kleppe, The Object Constraint Language: Precise Modeling with UML,
Addison-Wesley, 1999.

[4] P. Facon, R. Lelau and H.P. Nguyen, Combining UML with the B formal method for the
Specification of database applications, Research Report, CEDRIC Laboratory, Paris, 1999.

[5] ClearSy. Event B Reference Manual. Version 1.0. 2001. Available at:
http://www.atelierb.societe.com/ressources/evt2b/
eventb reference manual.pdf

[6] J. Draper et al, Evaluating the B method on an avionics example, Research Report, Pro-
ceedings of Data Systems in Aerospace (DASIA) Conference, 1996.

[7] C. Snook, L. Tsiopoulos, M. Walden, A Case Study in Requirement Analysis of Control
Systems using UML and B, Proceedings of International Workshop on Refinement of Critical
Systems, Methods, Tools and Developments, 2003.

[8] J-R. Abrial, Event Driven Electronic Circuit Construction, Available at:
http://www.atelierb.societe.com/ressources/articles/
cir.pdf

[9] J-L. Boulanger et al, Formalization of Digital Circuits Using the B Method, Proceedings of
8th International Conference on Computer Aided Design, Manufacture and Operation in
the Railway and Other Advanced Mass Transit Systems, 2002.

[10] W. Ifill et al, The Use of B to Specify, Design and Verify Hardware. In High Integrity
Software, Kluwer Academic Publishers, 43-62, 2001.

[11] C. Snook, M. Butler, Final tool extensions for integration of UML and B, Technical Report
D4.1.3, Project IST-2000-30103 PUSSEE, 2004.

[12] J-R. Abrial, Event Model Decomposition, Available at
http://www.atelierb.societe.com/resources/articles/
dcmp3.pdf

[13] PUSSEE Project. Available at: http://www.keesda.com/pussee, 2003.

[14] T. Lecomte, J. R. Abrial, F. Badeau, C. Czernecki, D. Sabatier, C. Snook, Abstract model-
ing: System level modeling and refinement in B, Technical Report, Project IST-2000-30103
PUSSEE, 2003.

[15] KessDA. BHDL User Guide. Preliminary Version. Available At:
http://www.keesda.com/pussee/biblio-
graphy.htm

[16] ETSI, Broadband Radio Access Networks BRAN; HIPERLAN Type 2; Data Link Control
(DLC) Layer Part1: Basic Data Transport Functions, Technical Report ETSI TS 101 761-1
v1.1.1. 2000.

[17] A. Krupp, W. Mueller, Refinement and verification of real time properies, Technical Report
D4.3.2, Project IST-2000-30103 PUSSEE, 2003.

[18] IBM Rational software. Available at: http://www.rational.com/, 2004.

[19] XMI. Available at : http://www.omg.org/technology/
documents/formal/xmi.htm, 2004.

[20] Eclipse. Available at : http://www.eclipse.org/, 2004.

View publication stats

https://www.researchgate.net/publication/221187253

