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Abstract. In recent years, Web services are used in various operations that access and
manipulate critical resources such as databases. To maintain these resources in a coherent
state, the use of the adequate mechanisms is necessary and appropriate description languages
provides just the opportunity to describe the behavior, to handle faults and to compensate
activities, but does not ensure that the execution context remains consistent. This paper de-
scribes an undergoing work where we propose a formal approach to isolate transactional parts
of a composed Web Service which are controlled later by fault and compensation mechanisms.

1 Introduction

The Service-Oriented Architectures (SOA) are increasingly used in various application domains.
Today we find various Services that operate on the Web and access various critical resources such
as databases. Some of these services performing database transactions are called transactional web
services. This kind of Services must verify the relevant constraints related to transactional systems.
In our work, we focus on web services described with BPEL [1].

In the BPEL1 language, a composite Web Service is implemented by a process that consists of
activities such as the messaging activities invoke and reply, which are used for interacting with the
other web services and the structured activities sequence, flow and scope, which act as containers
for their nested activities. BPEL provides some support for transactions through its fault and
compensation handlers, which allow undoing the effects of completed activities.

In most related work [2, 3], validation of the web services compositions and workflows shows
how to model transactional behavior and involves the verification of behavioral properties. A first
approach based on the Event B method and refinement was proposed in [4]. In this paper, we
discuss the use of the Event B model obtained by this approach in the case of transactional web
services and their composition.

2 Event B for analyzing transactional web services

Our idea is to provide assistance to BPEL developers using the Event B method B, more precisely,
providing a methodology for detecting the BPEL process parts that handle critical resources. At
the begining, the developer builds its BPEL process without taking into account the transactional
constraints. Thereafter, the obtained BPEL process is translated into Event B model using the

1 OASIS approved BPEL as a standard for Web Service composition
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rules defined in [4]. This step is automatically performed by the BPEL2B tool [5]. The transactional
properties and the properties related to the consistencies of resources used by the BPEL process are
manually expressed in the form of invariant in the INVARIANTS clause of the obtained Event B
model.

Fig. 1. The Event B invariant to detect BPEL transactional activities.

When using the RODIN platform [6], proof obligations (PO) are automatically generated and
are proved by the RODIN prover or semi-automatically by the designer. Some of these POs related
to invariants involving the transactional properties not provable because triggering these events
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separately violates the consistency invariants. Then, BPEL activities related to the events responsi-
ble for these POs are detected and isolated in the BPEL scope element (see section 12 of [1]). This
BPEL element allows the designer to define a particular BPEL part on which specific mechanisms
only apply to this isolated part. In our case, for transactional BPEL parts, the mechanisms for
fault and compensation handling are applied to the scope element and the isolated attribute of the
corresponding scope is set to TRUE. As a consequence, the execution of this part is isolated by the
tools, and at the same time consistency of the resources used by these activities is guaranteed.

On figure 1, an example of a transactional process which makes a bank transfer between two
bank accounts. The invariant inv10 : sum = BankAccount1 + BankAccount2 expresses the fact
that the sum of two bank accounts (BankAccount1 and BankAccount2 ) is always constant. The
POs, associated to the preservation of this invariant (squares on figure 1), generated by the events
InvokeDebit and InvokeCredit for this invariant are not provable. This helps the designer to isolate
the activities InvokeDebit and InvokeCredit on the BPEL process.

From a methodological point of view, our approach relies on the following steps.

1- Translate the BPEL model into Event B applying the approach described in [4].
2- Introduce in the Event B model the relevant invariants related to the transactional aspects.
3- Isolate the events of the Event B model whose POs, associated to the introduced invariant of

step 2, are not provable.
4- Re-design the BPEL model of step 1 by introducing a BPEL scope embedding the events iden-

tified at step 3 and a compensation/fault handler component.
5- Apply step 1.

This step based approach is applied until the associated Event B model is free of unproved PO.

3 Conclusion

In this paper, we have sketched a methodology showing how the Event B model obtained by the
approach described in [4] can be used to prove web services transactional properties. Transactional
services that access and manage critical resources are isolated in a scope elements with compensation
and fault handlers. When modelling fault and compensation handlers by a set of events, it becomes
possible to model and check the properties related to transactional web services. These properties
are encoded in the INVARIANTS clause in order to guarantee consistency of the manipulated
resources.
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Component-based software engineering is a practical approach to address the is-
sue of building large software by combining existing and new components. However,
building reliable software systems from components requires to verify the consistency
of components and the correctness of their assemblies. In this context we proposed an
abstract and formal model, named Kmelia [1,2], with an associated language to specify
components, their provided and required services and their assemblies; we also devel-
oped a framework named COSTO [3] and re-used some verification tools [1,4] to study
the Kmelia specifications.

A Kmelia component is equipped with invariants and with pre/post-conditions de-
fined on services. A Kmelia assembly defines a set of links between required and pro-
vided services of various components, with respect to their pre/post-conditions. Our
main concern is to establish the correctness of Kmelia components and their assem-
blies. Among the formal analysis necessary to ensure complete correctness, we con-
sider: (i) the component invariant consistency vs. pre-/post-conditions of services; (ii)
the Kmelia assembly link contract correctness, that relates services which are linked
in the assemblies. We use the notion of contract as in the classical works and results
such as design-by-contract [5] or specification matching [6]: on the one hand the pre-
condition of a required service is stronger than the pre-condition of the linked provided
service; on the other hand the post-condition of the provided service is stronger than
the post-condition of the linked required service. This motivates the choice for using
Event-B and the Rodin framework to check the consistency of Kmelia components and
the correctness of their assembly contracts, by discharging generated proof obligations.

Figure 1 gives an overview of the necessary Event-B models, generated from parts
of the Kmelia specifications we want to verify. We design Event-B patterns to guide the
translation and build the necessary proof obligations.

In order to verify the Kmelia invariant consistency rules, we systematically build
appropriate Event-B models, by translating the necessary Kmelia elements in such a
way that the Event-B proof obligations (POs) correspond to the specific rules we needed
to check at the Kmelia level. Three kinds of Event-B models are to be extracted:

– a first Event-B model C_obs corresponds to the observable part of the Kmelia com-
ponent ;

– another Event-B model (C) is built as a refinement of the previous one C_obs to
consider the whole component, not only its observable part;

– for each required service, an Event-B model A_servR is built.
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MACHINE C
REFINES C_obs
VARIABLES o, r, x 
INVARIANTS 
  x ∈ Tx inv(o,x)
EVENTS
  Event serv =
    refines serv_obs 
    any p where 
      p ∈ Tp
      pre(p,o)
    then
      o, r, x :| (post(p,o,o’,r’) 
           ∧ lpost(p,o,o’,x,x’,r’))
    end
END

c : C
o : To

x : Tx

lpost
post

  serv

pre

MAP(v,o)

servR

preR

postR

v : Tv

a : A

  servP callserv

MACHINE C_obs
VARIABLES o, r 
INVARIANTS 
  o ∈ To 
  inv(o) 
  r ∈ Tres
EVENTS 
  Event serv_obs = 
    any p where 
      p ∈ Tp 
      pre(p,o) 
    then 
      o, r :|post(p,o,o’,r’) 
    end
END

MACHINE a_servR_c_serv
REFINES A_servR
VARIABLES v, r, o
INVARIANTS
  o ∈ To
  inv(o)
  MAP(v,o)
  !q . (q∈Tp ∧ preR(q,v) 
                       ⇒ pre(q,o))
EVENTS 
  Event serv =
    refines servR
    any p where 
      p ∈ Tp
      preR(p, v)
    then
      v,r,o :| post(p,o,o’,r’) 
                       ∧ MAP(v’,o’) 
    end
END

MACHINE A_servR 
VARIABLES v, r
INVARIANTS 
  v ∈ Tv
  invR(v)
  r ∈ Tres
EVENTS
  Event servR =
    any p where
      p ∈ Tp
      preR(p,v)
    then
      v, r :|postR(p,v,v’,r’)
    end
END

Observability
Service call
Assembly link
Mapping

Event-B model
Extraction

Fig. 1. Event-B Extraction patterns

We describe how the proofs of the Event-B models are linked with the attempted proofs
at the Kmelia level. As an illustration, consider the generated POs about the invariant
preservation [7] by the event serv_obs:

o ∈ To ∧ inv(o) ∧ r ∈ Tres ∧ p ∈ Tp
∧ pre(p,o) ∧ post (p,o,o ’, r ’)
⇒ o’ ∈ To ∧ inv(o’) ∧ r ’ ∈ Tres

This corresponds exactly to the intended invariant consistency of the observable part at
the Kmelia level.

For each assembly link between a required service servR and a provided one serv,
we build an Event-B model as a refinement of the Event-B model previously gener-
ated for the required service servR. The observable variables of the provided service
are added and the invariant is completed with the mapping MAP(v,o). Then Event-B
refinement proof obligations are generated and discharged:

1. Invariant preservation

v ∈ Tv ∧ inv(v) ∧ res ∈ Tres ∧
o ∈ To ∧ inv(o) ∧ MAP(v,o) ∧ ∀ q . ( q∈Tp ∧ preR(q,v) ⇒ pre(q,o) )
p ∈ Tp ∧ preR(p,v) ∧
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post (p,o,o ’, r ’) ∧ MAP(v’,o’)
⇒
o’ ∈ To ∧ inv(o’) ∧ MAP(v’,o’) ∧ ∀ q . ( q∈Tp ∧ preR(q,v’) ⇒ pre(q,o’) )

With an ∧-elimination, we consider ∀q. (q∈Tp ∧ preR(q,v’) ⇒ pre(q,o ’)) in the
right hand side. Then, the use of p ∈ Tp ∧ preR(p,v) in the left hand side, com-
bined with MAP(v’,o’) enables us to conclude that pre(q,o’) holds.

2. Action simulation

v ∈ Tv ∧ inv(v) ∧ res ∈ Tres ∧
o ∈ To ∧ inv(o) ∧ MAP(v,o) ∧ ∀ q . ( q∈Tp ∧ preR(q,v) ⇒ pre(q,o) )
p ∈ Tp ∧ preR(p,v) ∧
post (p,o,o ’, r ’) ∧ MAP(v’,o’)
⇒
∃ v ’. postR(p,v,v ’, r ’)

These POs establish the Kmelia assembly link contract correctness rules.

The refinement technique of Event-B is used to manage both the structuring of the
generated Event-B models and also the proofs to be discharged. Yet we have applied the
technique to small and medium size case studies. Using classical B to validate compo-
nents assembly contracts has been investigated in [8]. Our approach is quite similar with
respect to the use of the refinement to check the assembly, but we start from complete
component descriptions and target Event-B to prove properties. Compared with exist-
ing works, our work contributes at the level of correct-by-construction components and
also at the level of the consistency of component assemblies. The results of the current
work constitute one more step for rigorously building components and assemblies using
the Kmelia framework.
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Abstract. In this paper we apply two different code synthesis approaches to an 
industrial case study. Both approaches automatically generate the 
implementation code from the timed automata model. One of these approaches 
is based on the using of B-method and its available code generation tools. We 
compare the resultant implementation code, using these two approaches, by 
mean of simulation. 

Keywords: Code Synthesis, Timed Automata, Production Cell 

1   Introduction 

Timed automata specification [1] is one of the successful approaches for modeling 
real time systems. There is a need to automatically transform the verified timed 
automata model to executable code (the implementation). By using well-defined 
transformation steps then the generated code will be correct-by-construction.  

To the best of our knowledge, there are only two available approaches to 
automatically generate implementation code from timed automata model. One is 
described in [2]. Also this approach is implemented and attached to TIMES tool [3]. 
We will call this approach “TIMES approach”. 

The other approach is based on using B-method [4]. This approach is based on 
automatically generate the B-model form the timed automata model and then 
automatically refine it into the concrete model, this concrete model is then used as an 
input to the available code generation tool [5] that generates the actual program code. 
The details of this approach are described in [6]. We will call this approach “B-
method approach”. 

In this paper we compare these two code synthesis approaches. We use an 
industrial case study (named production cell) for this comparison. The correctness of 
the resultant implementation code is verified by mean of simulation.  

2   The Comparison 

We select the model of the production cell to be used as a case study for the 
comparison between these two approaches. The production cell is an industrial 
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process that is used to forge metal plates (or blanks) in a press [7, 8]. The full 
description of the timed automata model of this production cell can be found in [9]. 
The production cell model applied to TIMES approach is exactly the same one 
applied to the B-method approach. We verified this model against its properties 
written as TCTL (Timed Computation Tree Logic) formulas as given in [9]. 

The B-method approach generates platform independent code [6]. So we select the 
generated code using TIMES to be platform independent too for the comparison 
purpose. 

For the B-method approach, we use the deterministic semantic of timed automata 
which is used for TIMES code generation as given in [2]. This semantic controls the 
selection of the next executed function. This deterministic semantic includes, 
o The run-to-completion semantic, which means that as long as there is an enabled 

action transition then it will be taken before the time progression. In other words 
the time will progress only when no more action transitions are enabled. 

o The non-determinism between action transitions is resolved by defining priorities 
for the action transitions. So if several transitions are enabled the one with the 
highest priority (written first) is taken. 

The using of this deterministic mechanism is generally not needed for the code 
generated by the B-method approach. But we use it as it is the implemented 
mechanism for the TIMES approach. So we select to use it for comparison purpose. 

By running the code generated using the B-method approach, it works fine as far as 
we run and no property violation could be found. On the other hand the code 
generated using TIMES approach runs successfully for the first 10 action transitions 
and then it progresses the time infinitely. This means that the system deadlocked, so it 
violates the first property of the model. While the first property is to grantee that the 
system is deadlock free.  

By trying to run the same sequence of transitions - that generates the deadlock - on 
the timed automata model using TIMES tool, we have found that this sequence is not 
a valid one. By more investigation we have found that the reason behind this deadlock 
is that neither the committed states [10] nor the urgent ones [10] are taken into 
consideration during the code generation for the TIMES approach. And so the priority 
that is given to the enabled action transitions violates these states settings. This 
mishandling drives the system into the deadlock state. 

The committed and urgent states are handled in the B-method approach. And so the 
generated code using the B-method approach doesn’t suffer from this weakness. The 
overall flow of this comparison is shown in Figure 1. 

3   Conclusions 

In this paper we compared two code synthesis approaches. Both approaches 
automatically generate the implementation code from the timed automata model. The 
first approach is implemented as a part of TIMES tool while the other approach takes 
advantages of the B-method features and reliable tools. We used the production cell 
case study for this comparison. The correctness of the resultant implementation code 
is verified by mean of simulation. 
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Figure 1: The Overall Flow 

The comparison gave a result that the approach based on the using of B-method 
generates a verified code (by mean of simulation) and handles more timed automata 
features. 
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Abstract. In previous work[1], we demonstrated the feasibility of for-
mally treating architectural style as an independent variable. Given an
application description and architectural style description in Alloy [3],
we map them to software architecture description that refines the given
application in conformance with the given style. This paper extends our
earlier work to aspect-oriented structures. We describe an aspect-enabled
application description style, a map taking application descriptions in
this style to pipe-and-filter architectures, and A2A, a tool that converts
Alloy-computed architectures to the AspectualACME architectural de-
scriptions language[2].

1 Application Description

We present our idea in an example: a mapping of Parnas’s KWIC [4], enhanced
with a logging concern, to an architectural description in the pipe-and-filter
style [4, 5]. We describe KWIC in a composition of functions application style.
We now define a new application description abstraction called AspectualFunc-
tion that extends the traditional function with crosscutting relations to other
functions. Before, around and after annotations specify these relations. Before
states that an AspectualFunction is executed before an affected element. Around
allows to skip execution of the affected function. After executes after an affected
function terminates. The left figure outlines our aspect-oriented KWIC descrip-
tion in Alloy. It has four functions (input, cs, alph, output), and an aspectual
function, logging, with crosscutting relations to the input and output functions.

2 Architectural Map

We now outline an Alloy implementation of an architectural map taking Alloy-
encoded application descriptions in this aspect-enabled style to architecture de-
scriptions in the pipe-and-filter style. To represent a map, we extend a traditional
architectural style description (in Alloy) with predicates for mapping applica-
tion descriptions in a given style to architectural descriptions in the given style.
These predicates take application descriptions as parameters (such as the KWIC
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Fig. 1. Left: enhanced KWIC description (elided) in Alloy, Right: part of the map
predicate represented in Alloy.

structure illustrated above), and define relationships required to hold between
them and computed architectural descriptions. Given an application description,
and a map, Alloy computes corresponding architectural descriptions guaranteed
to conform to the given architectural style.

Figure 1 at right presents the handleAspectualFunctions mapping predicate.
This parameterized predicate along with other predicates (elided for space) ac-
cepts application descriptions in the aspect-enabled composition-of-functions
style and produces pipe-and-filter architecture description. It specifies that for
each aspectual function there is both a component in the architectural descrip-
tion that handles it and an aspectual connector. The crosscutting role of the
aspectual connector is connected to the component’s port. For each affected
function, after which the aspectual function should be executed, there is a Base-
Role attached to the output port of the component that handles the affected
function. There is also analogous code for before and around situations.

3 Architecture Description

We use the Alloy Analyzer to compute architecture descriptions, represented as
satisfying solutions to the constraints of a map given an application description.
The A2A transformer application then converts the computed output to an ar-
chitecture description in a traditional architecture description language (ADL):
here, AspectualACME. Figure 2 illustrates the AspectualACME description of
our KWIC with logging. DataSource, a specific type of Filter, handles the in-
put function. Its output port is connected to Pipe0. Filter1 handles the CS
function. Its input and output ports are connected to Pipe0 and Pipe1, re-
spectively. Similarly, the other filters handle alph and output functions. Logging
affects DataSource and DataSink. The compositions of the AComponent0 com-
ponent that handles logging, with the DataSource0 and DataSink0 components
are modeled by the AConnector0 aspectual connector. It connects the output
port of DataSource0 as well as the input port of DataSink0 with the acPort0.
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Fig. 2. KWIC AspectualACME Description with logging.

The glue clause of AConnector0 specifies that the element bound to the cross-
cutting role of aCrosscuttingRole0 acts after the execution of the element bound
to the aBaseRole0, and acts before the execution of the element bound to the
aBaseRole1.

4 Discussion

Software architecture researchers have long assumed that architecture-independent
application descriptions can be mapped to architectures in many styles, that
results vary in quality attributes, and that the choice of a style is driven by con-
sideration of such attributes. The contribution of our earlier work was to show
that we can make this idea precise and computable. This paper extends that
work to the case of crosscutting concerns.
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An important frequent task in both Z [14] and B [1] is the proof of verification
conditions (VCs). In Z and B, VCs can be predicates to be discharged as a result
of refinement steps, some safety properties (preconditions) or domain checking.
Ideally, a tool that supports any Z and B technique should among other tasks,
automatically discharge as many VCs as possible. Here, we present ZB2SMT 3,
a Java package designed to clearly and directly integrate both Z and B tools
to the satisfiability module theory (SMT) solvers such as veriT [3], a first-order
logic (FOL) theorem prover that accepts the SMT syntax [12] as input. By
having the SMT syntax as target we are able to easily integrate with further
eleven automatic theorem provers that are also compatible like [5,2,7].

veriT provides an open framework to generate certifiable proofs, having a
decent efficiency [3] that does not compromise the performance of the tools in
usual developments. Its input format is the SMT-LIB language extended with
macro definitions. This syntactic facility uses lambda notation and is particu-
larly useful to write formulas containing simple set constructions. This feature
enhances the ability of veriT to handle sets, making the solver an interesting
tool in formal development efforts in set-based modelling languages.

This prover is used by Batcave [9], an open source tool that generates VCs for
the B method. Batcave has a friendly graphic interface and supports B specifica-
tion with representation in XML format. It uses a parser from the JBTools [13]
that is composed by the B Object Library (BOL).

CRefine [11] is a tool that supports the use of the Circus refinement calculus.
Circus [4] is a concurrent language tailored for refinement that combines Z with
CSP [6] and the refinement calculus[10]. CRefine allows the automatic application
of refinement laws and discharge of VCs. Much of the VCs generated to validate
the refinement law applications, are based on FOL predicates. Hence, CRefine
uses veriT to automatically prove such predicates.

In order to allow reuse, we have developed the package ZB2SMT, which in-
tegrates elements of Z and B predicates in a common language and transforms
these predicates into SMT syntax. ZB2SMT uses an extension of BOL to repre-
sent B predicates. On the other hand, the package uses a framework provided
by the Community Z Tools (CZT) [8], an ongoing effort that implements tools
for standard Z, to represent Z predicates.

In ZB2SMT, Z predicates are converted to B predicates, using the extension
of BOL. The extension is needed due to the fact that there are Z operators that
do not exist in BOL like the symmetric difference operator. Extending BOL by
∗

The ANP supports the work of the author through the prh22 project.
3 Freely available at http://www.consiste.dimap.ufrn.br/projetos/zb2smt.
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Fig. 1. Collaboration Diagram of ZB2SMT elements

including these missing operators, we improve the set of predicates that can be
treated by ZB2SMT. These predicates are translated into a SMT syntax and
written to a file that contains the predicate and some elements such as types
of variables, operators definition and set properties that are described over the
macro feature. The SMT file is sent to veriT which yields a boolean value for
the predicate. On successful evaluation of the predicate, the resulting value is
returned. If, however, the evaluation is not successful, veriT can be used to
return a SMT file that may be sent to others SMT solvers. This kind of file is
a bit different from the original input of veriT since others SMT solvers do not
have the peculiarity of macros definition. ZB2SMT allows an integration with
the others SMT provers using the conversion from SMT-verit to SMT-pure by
veriT.

The application of formal development to large programs generally produces
a great amount of VCs. Perform an automatic proof module in only one processor
may be impracticable. In order to improve the performance of the proof system,
the ZB2SMT has a module that can call different instances of theorem provers
on different computers, using socket and Java’s thread. The flow of execution of
the module in ZB2SMT is illustrated in Figure 1. For conciseness, Figure 1 does
not show the conversion from Z to B predicates.

This module has two parts: the client with the information about each pos-
sible instance of theorem prover, which can be local or remote, and the server
with the theorem prover installed locally. The user creates a configuration for
each instance of theorem prover in a file. It contains the following information:
path of theorem prover, parameters and the host machine.

The parallelization process replicates VCs and tries to solve by different
strategies. Each instance of theorem prover has its own set of specifics strategies
and parameters to try to solve the VCs. Thus, the user can create and explore
different strategies possibly making the proof process more efficient.

The motivation for our work is to provide a direct verification engine to
discharge VCs from Z, B or extensions of their tools. ZB2SMT has been effective
and promising in the first experiences in CRefine and Batcave. It can be directly
used, like a black box, by tools that work with the CZT framework for Z or B
tools which use the BOL library. Furthermore, ZB2SMT offers an easy way to
get SMT files from B or Z predicates. Currently, we are embedding, by adjusting
parameters and path configurations, others SMT solvers in ZB2SMT.
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The parallelism inside ZB2SMT has been an important feature. It improves
the proof process by allowing different strategies to be performed in parallel,
reducing the verification time. However, the performance of our system can be
improved even more by incorporating a predicate classifier. It would classify the
predicate and select the best available SMT solver to prove it, since some SMT
solvers are more efficient in certain types of predicates.
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ambiente de verificação automática para o método B. In A. C. V. Melo and
A. Moreira, editors, SBMF 2007: Brazilian Symposium on Formal Methods, 2007.

10. C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
11. M. V. M. Oliveira, A. C. Gurgel, and C. G. de Castro. CRefine: Support for

the Circus Refinement Calculus. In Antonio Cerone and Stefan Gruner, editors,
6th IEEE International Conferences on SEFM, pages 281–290. IEEE Computer
Society Press, 2008. IEEE Computer Society Press.

12. Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard: Version 1.2, 2006. Avail-
able at www.SMT-LIB.org.

13. J. C. Voisinet. Jbtools: an experimental platform for the formal b method. In PPPJ
’02/IRE ’02: Proceedings of the inaugural conference on the Principles and Practice
of programming, pages 137–139, Maynooth, County Kildare, Ireland, Ireland, 2002.
National University of Ireland.

14. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.



Secrecy UML Method for Model
Transformations?
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Abstract. This paper introduces the subject of secrecy models devel-
opment by transformation, with formal validation. In an enterprise, con-
structing a secrecy model is a participatory exercise involving policy mak-
ers and implementers. Policy makers iteratively provide business gover-
nance requirements, while policy implementers formulate rules of access
in computer-executable terms. The process is error prone and may lead
to undesirable situations thus threatening the security of the enterprise.
At each iteration, a security officer (SO) needs to guarantee business
continuity by ensuring property preservation; as well, the SO needs to
check for potential threats due to policy changes. This paper proposes
a method that is meant to address both aspects. The goal is to allow
not only the formal analysis of the results of transformations, but also
the formal proof that transformations are property preserving. UML is
used for expressing and transforming models [1], and the Alloy analyzer
is used to perform integrity checks [6].

Keywords: Model transformation, Property preservation, SUM, Alloy,
UML.

1 Introduction

Governance requirements dictate a security policy that regulates access to infor-
mation. This policy is implemented by means of secrecy models3 that establish
the mandatory secrecy rules for the enterprise. For example, a secrecy rule may
state: higher-ranking officers have read rights to information at lower ranks. In
addition, Business policies may specify instances such as: user A has access to
department M. Hence, an enterprise governance system is composed of a combi-
nation of secrecy model rules and business policies.

Automation helps reduce design errors of combined and complex secrecy
models [3]. However, current industry practices do not include precise meth-
ods for constructing and validating enterprise governance models. Our research
? This work has been funded in part from grants of the Natural Sciences and Engi-

neering Research Council of Canada and CA Labs.
3 We concentrate in this paper on secrecy, which is one of several aspects of security.
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proposes a formal transformation method to construct secrecy models by way of
applying transformations to a base UML model. It provides the advantage of for-
mal validation of constructed models. For example, starting from an initial model
called Base Model (BM), with only three primitives: Subject/Verb/Object, we
can generate –by transformation functions– RBAC0 (Role Based Access Control
model) in addition to a SecureUML model.

By way of examples we intend to show that our method is potentially useful
for building different types of secrecy models. By means of formal analysis we
intend to show that a SO will be able to validate a resultant model for consistency
in addition to detecting scenarios resulting from unpreserved properties.

In this paper, we present our method in section 2. In section 3, we show ex-
amples that illustrate our approach with application results. Finally, we conclude
this paper, in section 4, and discuss the future work and perspectives.

2 Secrecy UML Method (SUM)

SUM serves as a systematic method to construct secrecy properties for enter-
prise governance. Starting from a generic UML model, that we call base model
(BM) and a set of transforming operations (TOs) (see Fig. 1). The operations
are conjectured to be property-enriching as well as property-preserving and are
applied to achieve a resultant model (RM). In Fig. 1, several rectangles labelled:
Specialize, Aggregate, Compose, Split Right, Split Left, Reflex, Tree Macro, and
Graph Macro. These rectangles represent the transformation operations. Each
of the transformation operations takes as input a class labelled ’input’ –shown
using a grey shading– and produces the respective output –as shown. The TOs
modify the base model iteratively in a way that, in practice, the resultant model
is customized and used to govern security or privacy properties of a particular
enterprise.

We use a first order logic formalism to: represent the base model, the trans-
formation operations, and the resultant model. We show that it is possible to
validate the resultant model for consistency using logic analysers. The transla-
tion from the UML language to a logic analyser language can be done through
the use of a specialised secrecy modelling language called SML [4]. SML provides
a component view of Alloy code that is conjectured to facilitate the represen-
tation of secrecy models. Alternatively it can be done directly through a UML
to Alloy translator [6]. In all cases a transformation tool can be programmed to
map a model to another. Alloy will validate the models for properties of model
preservation and consistency.

2.1 Base-model (BM).

The base model proposed in this paper includes three primitives components: S,
V and O. A subject S is a subject in the enterprise. A verb V denotes the fact
that an action or right is given or denied to the subject. An object O is the data
item or object to which the action or right refers.
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Fig. 1. Transformation operations.

2.2 Transformation Operation (TO).

A TO is an operation consuming an input and producing an output model. Our
method defines the following TOs: Specialisation, Aggregation and Composition,
Reflex, Split, Tree Macro, Graph Macro (See Fig. 1).

Specialisation: Following the UML definition [5] this operation extends a
general class into a specific one with detailed features.

Aggregation and Composition: Aggregation and Composition describe the
construction of a parent class from sub-classes, that are mandatory (sub-classes)
in the case of Composition. Example of Composition: An audit department is
composed of financial and privacy audit sub-departments. Both departments (pri-
vacy and financial audits) are necessary for the audit department to exist. On
the other hand, the set of employees consists of full-timers, part-timers, and
consultants is considered an Aggregation.

Reflex operation: A reflex transformation adds a relation to the input class.
This operation is frequently used, mostly to represent a structural relation. e.g.
a node is a sibling of another node.

Split operation: A split is often used to transform a component into a relation
between two components. For example, an object can be split into a session
controlling an object. A split can preserve all or some of the original relations of
the input component. In Fig. 1, we show two kinds of split left, right, which we
will detail in future work.
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Tree Macro: The tree macro is useful for the construction of several secrecy
models. For instance, it can be used to represent a relation between a subject and
its department or Group.

Graph Macro: A graph macro takes an input class and creates a graph of
classes. For example, it can be used for building business processes.

3 Examples

3.1 Transforming BM to RBAC

In this first example of transformation, we apply a set of operations so that the
resultant model is similar to RBAC (Role Based Access Control model) in [2].
Fig. 2 shows the syntax representation of the RM components at each iteration.

Fig. 2. Transformation steps from BM to RBAC model.

In this case, we simply apply three Split operations on both primitive compo-
nents: Subject and Verb, followed by the Renaming operation, e.g. Verb becomes
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Operation. Here is a list of the used successive operations, so that in the left side
(the function result) we have the set of components forming the new model:

– Split(S)={S, Role}
– Split(S)={S, Session}
– Split(V)={Verb, Operation}
– Rename(S, V)={User, Permission}

3.2 Transforming BM to SecureUML

SecureUML is a security modeling language based on RBAC with refinement
[3]. Fig. 3, shows the transformations needed to develop the meta-model of Se-
cureUML.

Fig. 3. Transformation steps from BM to SecureUML model.
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The SecureUML is defined as an extension of RBAC. It supports: the policy
constraint (using the Authorisation Constraint component), the Action hierar-
chy, the Specialisation of the Action in Atomic Action and Composite Action,
etc. Since, SecureUML is more complicated. It requires using more than two
types of TO, in the following operation list:

– Split(S)={S,Role}
– Specialise(S)={Group,User}
– Aggregate(Group)={S}
– Aggregate(Role)={Role}
– Split(V)={V, AuthorisationConstraint}
– Rename(V)={Permission}
– Compose(Resource)={Action}
– Specialise(Action)={AtomicAction, CompositeAction}
– Aggregate(AtomicAction)={Action}

4 Conclusion

In conclusion, the Secrecy UML method (SUM) supports the construction of
complex secrecy models from a base-model by a disciplined transformation method.
We believe that its application would be to assist a security officer in achieving
the required enterprise security policy by model transformation. We will show in
future publications that our technique, combining the use of UML and relational
logic, allows verification of the final result using the Alloy analyser. Future work
will strengthen this conjecture by proving the property-preserving characteristics
of the transformations. There are several avenues for future work in this domain.
We plan (i) to provide a detailed formal description of the transformation oper-
ations on a case study; (ii) to extend this paper to include the SML statements
corresponding to the output model in each case; (iii) to show the ability to de-
tect inconsistencies in the design. Finally, we foresee to create a graphical user
interface module that allows a designer to transform a UML model, using SUM
operations, and to create an automatic SUM to SML translator.
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Abstract. In a model-based testing approach as well as for the verifi-
cation of properties by model-checking, B models provide an interesting
solution. But for industrial applications, the size of their state space often
makes them hard to handle. To reduce the amount of states, an abstrac-
tion function can be used, often combining state variable elimination and
domain abstractions of the remaining variables. This paper illustrates a
computer aided abstraction process that combines syntactic and seman-
tic abstraction functions. The first function syntactically transforms a B
event system M into an abstract one A, and the second one transforms a
B event system into a Symbolic Labelled Transition System (SLTS). The
syntactic transformation suppresses some variables in M. This function
is correct in the sense that A is refined by M. A process that combines
the syntactic and semantic abstractions has been experimented. It sig-
nificantly reduces the time cost of semantic abstraction computation.
This abstraction process allows for verifying safety properties by model-
checking or for generating abstract tests. These tests are generated by a
coverage criteria such as all states or all transitions of an SLTS.

Keywords: Model Abstraction, Syntactic Abstraction, Refinement.

The full version of this short paper is available as a research report: [JSBM09].

1 Introduction

B models are well suited for producing tests of an implementation by means
of a model-based testing approach [BJK+05,UL06] and to verify dynamic prop-
erties by model-checking [LB08]. But model-checking as well as test generation
requires the models to be finite, and of tractable size. This usually is not the case
with industrial applications, and the search for executions instantiated from the
model frequently comes up against combinatorial explosion problems. Abstrac-
tion techniques allow for projecting the (possibly infinite or very large) state
space of a system onto a small finite set of symbolic states. Abstract models
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make test generation or model-checking possible in practice. We have proposed
and experimented in [BBJM09] an approach of test generation from abstract
models, that computes in finite time a Symbolic Labelled Transition System
(SLTS) of all the behaviors of a model (with possibly an infinite concrete state
space). However, it appeared that the computation time of the abstraction could
be very expensive. We had replaced a problem of search time in a state graph
with a problem of proof time. Indeed, computing an abstraction is performed by
proving enabledness and reachability conditions on symbolic states [BPS05].

This short paper illustrates on an example our contribution [JSBM09] to
reduce this proof time problem, by means of a proof free syntactic abstraction
function. It works by suppressing some state variables of a model. When there
are domain abstractions on the remaining state variables, a semantic abstraction
that requires proof obligation checking is also performed. But it applies to a
model that has been syntactically simplified.

2 Electrical System Example

Fig. 1. Electrical System

A device D is powered by one of three batteries B1, B2, B3 as shown in Fig. 1.
A switch connects a battery Bi to the device D. A clock H periodically sends
a signal that causes a commutation of the switches, i.e. a change of the battery
that powers D. The system satisfies the three following requirements:

– Req1: only one switch is closed at a time (i.e. there is no short-circuit),
– Req2: there is always one switch closed, connected to a working battery,
– Req3: a signal from the clock always changes the switch that is closed.

If a failure occurs to the battery that is powering D, the system triggers an
exceptional commutation to satisfy Req2. We assume that there are never more
than two batteries down at the same time. When two batteries are down, Req3

is relaxed and the clock signal leaves unchanged the switch that is closed.
This system is modeled by means of three variables H, Sw and Bat. H ∈

{tic, tac} models the clock: tic means asking for a commutation and tac that
the commutation has occurred. Sw models the switches: Sw = i indicates that
the switch i is closed while the others are opened. This modelling makes that
requirements Req1 and Req2 necessarily hold. Bat ∈ 1..3 → {ok, ko} models the
batteries, with ko meaning that a battery is down. The invariant I expresses the
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assumption that at least one battery is not down by stating that Bat(Sw) = ok:
I =̂ H ∈ {tic, tac} ∧ Sw ∈ 1..3 ∧ (Bat ∈ 1..3 → {ok, ko}) ∧Bat(Sw) = ok.
The initial state is defined by Init in Fig. 2. The behavior of the system

is described by four events, modeled in Fig. 2 with the primitive forms of sub-
stitutions: Tic sends a commutation command, Com performs a commutation,
Fail simulates the failure of a battery, and Rep simulates the replacement of a
battery.

Init =̂ H, Bat, Sw := tac, {1 7→ ok, 2 7→ ok, 3 7→ ok}, 1
Tic =̂ H = tac ⇒ H := tic
Com =̂ card(Bat B {ok}) > 1 ∧H = tic ⇒

@ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ∧ ns 6= Sw ⇒ H, Sw := tac, ns)
Fail =̂ card(Bat B {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat B {ok}) ⇒
nb = Sw ⇒

@ns.(ns ∈ 1..3 ∧ ns 6= Sw ∧ Bat(ns) = ok ⇒
Sw, Bat := ns, Bat <+ {nb 7→ ko})

[]nb 6= Sw ⇒ Bat := Bat <+ {nb 7→ ko}))
Rep =̂ @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat B {ko}) ⇒ Bat := Bat <+ {nb 7→ ok})

Fig. 2. B Specification of the Electrical System

3 Syntactic Abstraction

We consider abstractions obtained by observing only a subset of variables, de-
fined as being relevant variables. This set is built as a fixpoint, starting with
chosen variables from the property to test, and growing by addition of the vari-
ables required for computing the values assigned to the relevant variables.

For example, to test the electrical system in the particular cases where two
batteries are down, observing the variable Bat is sufficient. In [JSBM09] we define
a set of transformation rules that produce a simplified model A. We prove that
A is, by construction, refined by the source model M, so that it is sufficient to
verify safety properties on A for them to hold on M. It is also easier to compute
test cases from A than from M.

The electrical system is transformed as shown in Fig. 3 for the set of observed
variables {Bat}. It is a correct B event system. The initialization only assigns
the observed variable. Its value is the same as in the source model. The event
Tic is abstracted by skip because its guard and its action do not refer to the
observed variable. The guard of the events Com and Fail, that are in the shape of
p(Bat)∧p′(H), are transformed in the shape of p(Bat) because the approximation
of a proposition p(x) is true, when x is a set of non observed variables. The bound
variables are considered as observed variables. The action of an event (such as
Com for example) becomes skip if it only assigns non observed variables. For the
Fail event, we only keep the assignment of the variable Bat. Finally, the event
Rep is unchanged because its guard and its action only assigns the variable Bat
and depends on the value of the bound variable nb.
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Init =̂ Bat := {1 7→ ok, 2 7→ ok, 3 7→ ok}
Tic =̂ skip
Com =̂ card(Bat B {ok}) > 1 ⇒ @ns.(ns ∈ 1..3 ∧ Bat(ns) = ok ⇒ skip)
Fail =̂ card(Bat B {ok}) > 1 ⇒

@nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat B {ok}) ⇒ Bat := Bat <+ {nb 7→ ko})
Rep =̂ @nb.(nb ∈ 1..3 ∧ nb ∈ dom(Bat B {ko}) ⇒ Bat := Bat <+ {nb 7→ ok})

Fig. 3. B Syntactically Abstracted Specification of the Electrical System

4 Abstraction Process

In [BBJM09] we have introduced a test generation method based on a semantic
abstraction of a B model (see Fig. 4/Process A). The abstraction is computed as
an SLTS according to a test purpose. The idea is to observe the state variables
that are modified by the operations activated by the test purpose. The domain
of the observed variables can be abstracted into a few subdomains. For example,
a natural integer n can be abstracted into subdomains n = 0 and n > 0.

The two main drawbacks of this process are its time cost and the propor-
tion of proof obligations (POs) not automatically proved. Indeed, the semantic
abstraction is based on a theorem proving process [BC00]. Each unproved PO
adds a transition to the SLTS that is possibly unfeasible. Hence we propose to
use a syntactic abstraction in addition to the semantic one. In Fig. 4/Process
B, we describe a complete abstraction process in which we combine a syntactic
abstraction that eliminates some variables (see Sec. 3), with a semantic abstrac-
tion computed by GeneSyst [BPS05] that projects the domain of the observed
variables onto abstract domains.

Fig. 4. Abstraction Process

5 Conclusion, Related Works and Further works

We have illustrated a method for abstracting an event system by elimination of
some state variables. The abstraction is refined by the source model. It is useful
for verifying properties and generating tests. The main advantage of our method
is that it first performs syntactic transformations, which reduces the number of
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POs generated and facilitates the proof of the remaining POs. This results in a
gain of computation time. We believe that the bigger the ratio of the number of
state variables to the number of observed variables is, the bigger the gain is. This
conjecture needs to be confirmed by experiments on industrial size applications.

Many other works define model abstraction methods to verify properties. The
methods of [GS97,BLO98,CU98] use theorem proving to compute the abstract
model, which is defined over boolean variables that correspond to a set of a
priori fixed predicates. In contrast, our method firstly introduces a syntactical
abstraction computation from a set of observed variables, and further abstracts
it by theorem proving. [CABN97] also performs a syntactic transformation, but
requires the use of a constraint solver during a model checking process.
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2009.

[BC00] D. Bert and F. Cave. Construction of Finite Labelled Transition Systems
from B Abstract Systems. In W. Grieskamp, T. Santen, and B. Stoddart,
editors, Integrated Formal Methods, volume 1945 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2000.

[BJK+05] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors.
Model-Based Testing of Reactive Systems, volume 3472 of LNCS. 2005.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite
state systems compositionally and automatically. In CAV’98, volume 1427
of LNCS. Springer, 1998.

[BPS05] D. Bert, M.-L. Potet, and N. Stouls. GeneSyst: a Tool to Reason about
Behavioral Aspects of B Event Specifications. In ZB’05, volume 3455 of
LNCS, 2005.

[CABN97] W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint
solving and symbolic model checking for a class of systems with non-linear
constraints. In CAV’97, volume 1254 of LNCS. Springer, 1997.

[CU98] M.A. Colon and T.E. Uribe. Generating fnite-state abstractions of reactive
systems using decision procedures. In CAV’98, volume 1427 of LNCS, 1998.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
CAV’97, volume 1254 of LNCS, 1997.

[JSBM09] J. Julliand, N. Stouls, P.-C. Bué, and P.-A. Masson. B model abstraction
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Abstract. The aim of this paper is to gradually introduce formalism in the re-
quirement engineering phase in order to facilitate its validation. We analyze and
elicit our requirements with KAOS, specify them into Event-B language, and then
use the animation technique to rigourously validate the derived formal specifica-
tion and consequently its semi-formal counterpart goal model against original
customers’ requirements.

1 Introduction

The use of formal methods for software development is escalating over the period of
time. Most of the formal methods refine the initial mathematical model up to an ex-
tent where final refinement contains enough details for an implementation. The input to
this formal specification phase is often the documents obtained during the requirements
analysis activity which are either textual or semi-formal. Now there is a traceability gap
between analysis and specification phases as verification of the semi-formal analysis
model is difficult because of poor understandability of lower level of formalism of ver-
ification tools and validation of the formal specification is difficult for customers due to
their inability to understand formal models.

Our objective is to bridge this gap by a gradual introduction of formalism into the
requirement model in order to facilitate its validation. We analyse our requirements
with KAOS (Knowledge Acquisition in autOmated Specification) [1] which is a goal-
oriented methodology for requirements modeling, then we translate the KAOS goal
model, following our derived precise semantics, into an Event-B [2] formal specifica-
tion with the help of the platform RODIN3, and finally we rigourously animate our spec-
ification with the help of the animator Brama [3], incorporated into platform RODIN,
in order to validate the conformance of the specification to original requirements. With
this approach we aim to reap benefits at two levels: customers can be involved into
the development right form the start and consequently the requirement errors can be
detected right on the spot.

3 http://rodin-b-sharp.sourceforge.net
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2 KAOS and Event-B

To analyze our requirements, we use KAOS which builds a data model in UML-like
notation. The main KAOS goal defines an objective the system should meet, usually
through the cooperation of multiple agents such as devices or humans, followed by
several sub goals. Contrary to other requirements methods, such as i* [4], KAOS is
well suited for our purpose because it can be extended with an extra step of formality
which can fill in the gap between requirements and the later phases of development.
The choice of Event-B as a formal specification language is due to its similarity and
complementarity with KAOS. Firstly, Event-B is based on set theory with the ability
to use standard first-order predicate logic facilitating the integration with the KAOS
requirements model that is based on first-order temporal logic. Secondly, both Event-B
and KAOS have the notion of refinement (constructive approach). Finally, KAOS and
Event-B have the ability to model both the system and its environment.

3 Discussion

Fig. 1. The rigorous require-
ments validation process

There are two main steps of our approach. First we trans-
late our goal model into an Event-B specification with
the help of our Event-B semantics, and later we animate
the specification in order to validate that captured re-
quirements are in accordance with original customer re-
quirements. The whole process of validation is summed
up by figure 1. Following is the brief elaboration of our
approach:

3.1 The semantics step

The first step of our approach aims to express the KAOS
goal model with Event-B by staying at the same level of
abstraction which allows us to give this expression pre-
cise semantics. To achieve this objective, we use Event-
B to formalize the KAOS refinement patterns that ana-
lysts use to generate a KAOS goal hierarchy. We primar-
ily focus on most frequently used "Goal Patterns": the
Achieve goals. The assertions in Achieve goals are ex-
pressed as following: G-Guard ⇒¦G-PostCond, where
G-Guard and G-PostCond are predicates. Symbol ⇒
denotes the classical logical implication. Symbol ¦ (the
open diamond) represents the temporal operator "even-
tually" which ensures that a predicate must occur "at
some time in future". Hence, such assertions demonstrate that from a state in which
G-Guard holds, we can reach sooner or later to another state in which G-PostCond
holds.
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If we refer to the concepts of guard and postcondition that exist in Event-B, a KAOS
goal can be considered as a postcondition of the system, since it means that a property
must be established. The crux of our formalization is to express each KAOS goal as
a B event, where the action represents the achievement of the goal. Then, we will use
the Event-B refinement relation and additional custom-built proof obligations to derive
all the subgoals of the system by means of B events. One may wonder whether the
formalization of KAOS target predicates (i.e. the predicate after the diamond symbol)
as B post conditions is adequate, since the execution of B events is not mandatory. At
this very high level of abstraction, there is only one event for representing the parent
goal. In accordance with the Event-B semantics, if the guard of the event is true, then the
event necessarily occurs. For the new events built by refinement and associated to the
subgoals, we guarantee by construction that no event prevent the post conditions to be
established. For that, we have proposed an Event-B semantic for each KAOS refinement
pattern by constructing set-theoretic mathematical models. This process continues until
the complete specification of KAOS goal model into Event-B. A detailed discussion on
this step can be found in [5]. Formalization of the goal patterns other than Achieve goals
is a work in progress.

3.2 The animation step

Following the precise semantics discussed in previous section, we derive an initial
Event-B specification of the KAOS goal model. The aim of this animation step is to
validate this derived specification. Our approach to address this issue is based on fol-
lowing hypothesis: we presume if the animation of the specification reveals the same
behavior that we intended while writing our goal model, then the Event-B specification
would be considered as a valid formal representation of the customers’ requirements.
In order to achieve this, we execute our specification to check its behavior with the
approach defined in [6]. We rigourously animate the specification at each refinement
step. It not only indicates any deviation from original requirements right on the spot but
also helps fixing the specification errors. If any deviation from the intended behavior is
discovered, we go back to the source and rectify the error. The process continues until
the specification fully adheres to the requirements.

4 Conclusion and future work

We present an approach to validate a semi-formal requirement model by the animation
of its formal counterpart. We express a KAOS goal model capturing users’ requirements
into an Event-B specification language for a stepwise requirement validation process.

At theoretical level our approach seems promising as we have obtained some initial
results at its both steps independently. However, we hope that our proposed combined
approach of analysis, specification and validation is also feasible collectively. We aim
to target at transportation domain [7] to test our hypothesis.
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Abstract. We try to recover the proof correctness strength of the B
method and the simplicity of the Abstract State Machine model (ASM)
by constructing a B-ASM language. The language inherits from the lan-
guage of substitution and from ASM program. The process of refinement
leads us to a program expressed in the ASM syntax only. As each step of
refinement is correct towards the specification, we obtain an ASM that
is proved to be correct towards the specification.

Keywords. B Method, ASM, refinement, correctness, fixed point.

1 Introduction

This paper aims at extending the B language [1] in order to build ASM programs
which are correct with respect to B-like logical specifications. On the one hand,
the main strengths of the B formal method are: i) the ability to express logical
statements, and ii) the construction of a correct implementation by refinement.
On the other hand, from our viewpoint, the striking aspects of ASM are the
non-bounded outer loop that can reach the fixed point of a program and the
power to express naturally any kind of (sequential) algorithms.

This paper introduces a new specification language, called B-ASM, attempt-
ing to bridge the gap between these two languages, by taking advantage of the
strengths of each approach. Our leitmotiv is to build an ASM which is correct
with respect to a B-like specification. In that aim, we have extended the syntax
and the semantics of B to take the non-bounded iteration into account. More-
over, the reuse of the well-founded theoretical relation of refinement from the B
method is then straightforward. Rather than directly writing a complex ASM
program, one can first specify the required logical properties of the program in a
B-ASM specification. Then, we are able to build from the latter a correct ASM
program, by proving the proof obligations (PO) associated to each refinement
step. For instance, if we can determine a variant in the B-ASM specification for
? This author has been supported by the ANR-09-JCJC-0098-01 MaGiX project to-

gether with the Digiteo 2009-36 HD grant and région Île-de-France.
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the outer loop, then the ASM program obtained by refinement is guaranteed to
terminate.

In the following paragraphs, we briefly describe ASM and B.

Abstract State Machine. Abstract State Machines (ASMs) are known as a
powerful theoretical tool to model (sequential) algorithms and this, at any level
of abstraction of data structures ([7]). An ASM is a couple (A, π) where A is an
algebra (that specifies data) and π is a program that operates over the algebra
A. The program is a finite set of conditional rules testing (essentially) equalities
over terms of the algebra and then updating the state in parallel (in the following
we don’t restrict the syntax of ASM to be in normal form, but we use a syntax
closer to the Lipari Guide [6]).

The algebra A is initialized by an initial algebra and a computation is then
the execution of π until a fixed point is reached or when a clashed-update occurs
(a location is updated by two different values simultaneously).

This general model of computation has been used to model a large class of
problems (see [8] for tools and general purpose and [9] for a large example).

More than a practical tool, the ASM model is an attempt to formalize the
widely used notion of algorithms. The most important theoretical result is given
in [7] and states that any algorithm may be simulated step-by-step (in strict lock
step) by an appropriate ASM.

An Overview of B. B is a formal method [1] that supports a large seg-
ment of the software development life cycle: specification, refinement and im-
plementation. In B, specifications are organized into abstract machines (similar
to classes or modules). State variables are modified only by means of substi-
tutions. The initialization and the operations are specified in a generalization
of Dijkstra’s guarded command notation, called the Generalized Substitution
Language (GSL), that allows the definition of non-deterministic substitutions.
For instance, in an abstract machine, we can define an operation with guarded
substitutions, which are of the form any x where A then S end, where x is a
variable, A a first-order predicate on x, and S a substitution. Such a substitution
is non-deterministic because x can be any value that satisfies predicate A.

The abstract machine is then refined into concrete machines, by replacing
non-deterministic substitutions with deterministic ones. At each refinement step,
the operations are proven to satisfy their specification. Hence, through refine-
ment steps and proofs, the final code is proven to be correct with respect to
its specification. The B method is supported by several tools, like Atelier B [5],
Click’n Prove [2] and the B-Toolkit [4].

Contribution. Let M be a B-ASM machine, then we can construct an ASM
which is correct with respect to M .

This contribution is detailed in the next sections. Language B-ASM, the
extension of B integrating ASM constructs, is presented in Sect. 2. Then, Sect. 3
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provides a formal semantics for B-ASM, based on the weakest preconditions.
Section 4 shows how to prove that an ASM program built by refinement is
correct with respect to its B-ASM specification. Finally, Sect. 5 concludes the
paper with some remarks and perspectives.

2 B-ASM Programs

ASM programs are decomposed in two parts:

– an initialization algebra, i.e. an initial state;
– a one-step transition function.

For executing an ASM program, the transition function is iteratively applied
to the current state, starting from the initial state. The program stops when a
fixed point is reached, in other words, the transition function does not alter the
current state anymore.

We define B-ASM programs in the same way as in ASM programs, but the
language used to define transition functions is enriched with operations akin to
some non-deterministic B substitutions.

Definition 1. B-ASM transition functions, i.e. B-ASM transitions, are defined
by induction as follows:

ASM operations:

– f(
−→
t ) := u is an B-ASM transition, where f(

−→
t ) and u are first-order terms;

– if A then S end is an B-ASM transition, where A is a formula and S is
an B-ASM transition;

– par
−→
S end is an B-ASM transition, where

−→
S is a list of B-ASM transition;

– skip is an B-ASM transition;

non-deterministic operations:

– f(
−→
t ) :∈ E is an B-ASM transition, where f(

−→
t ) is a first-order term and

E a set;
– @x.S is an B-ASM transition, where x is a variable and S is an B-ASM

transition;
– choice S or T end is an B-ASM transition, where S and T are B-ASM

transition;
– any x where A then S end is an B-ASM transition, where x is a variable,
A a formula and S an B-ASM transition.

Let us now focus on the B specification language for the purposes of this
paper. In B, each abstract machine encapsulates state variables (introduced by
keyword VARIABLES), an invariant typing the state variables (in INVARI-
ANT), an initialization of all the state variables (INITIALISATION), and
operations on the state variables (OPERATIONS). The invariant is a first-
order predicate in a simplified version of the ZF-set theory, enriched by many
relational operators.
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We define the B-ASM specification language as a simple modification of the
B language, in order to specify ASM programs. In B-ASM, the vocabulary of
algebras (i.e. states) is introduced by keyword VARIABLES, the variables are
typed in the clause INVARIANT, the INITIALISATION clause contains
the definition of the initial states as parallel (non-deterministic) substitutions,
and the ASM transition is described in the clause OPERATION. In this paper,
we deal with terminating programs, so we add to the syntax an additional clause
called VARIANT. The latter defines the integer value which strictly decreases
at each iteration step.

To illustrate the B-ASM approach, we consider a machine specifying the
maximum of an array of integer values.

MACHINE Maximum(tab)
CONSTRAINTS tab ∈ seq1(N)
VARIABLES maxi /* Vocabulary */
INVARIANT maxi ∈ ran(tab) /* Typing */
CONSTANTS Maxi
PROPERTIES

Maxi ∈ seq1(N)→ N ∧
∀ t ∈ seq1(N).(Maxi(t) ∈ ran(t) ∧ ∀ e ∈ ran(t).(e ≤Maxi(t)))

INITIALISATION maxi := tab(1) /* Initial state */
VARIANT Maxi(tab)−maxi /* Halting condition */
OPERATION /* B-ASM transition function */

maxi := Maxi(tab)
END

In this abstract machine, we only specify the logical properties of the ex-
pected results, without defining an algorithm to compute them. At this stage,
the OPERATION clause consists of a non-deterministic B-ASM transition. In
order to obtain a formalized ASM (i.e. without non-deterministic operations),
this abstract machine has to be refined into a deterministic specification. Our
approach consists in adapting the B refinement relation to the B-ASM method.
Since the semantics of the B language is based on weakest preconditions (WP),
we have to provide the WP semantics of the B-ASM transition language de-
fined in Def. 1. This semantics will be presented in Sect. 3. In our example,
the following machine is one of the possible refinements of abstract machine
Maximum(tab).

REFINEMENT MaximumASM(tab)
REFINES Maximum(tab)
VARIABLES length, i,maxi /* Vocabulary */
INVARIANT /* Typing */

length = size(tab) ∧
i ∈ 1..length ∧
maxi = Maxi(tab ↑ i)

INITIALISATION /* Initial states */
length := size(tab);
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i := 1;
maxi := tab(1)

VARIANT length− i /* Halting condition */
OPERATION /* ASM transition function */

if i < length then
par

i := i+ 1
if tab(i+ 1) > maxi then

maxi := tab(i+ 1)
end

end
end

END

Observe that we have formalized an ASM, since there are no non-deterministic
operations used in the OPERATION clause. Intuitively, the algorithm specified
by the ASM computes the maximum of array tab. By using the refinement re-
lation inspired from B, we can prove that this ASM faithfully implements its
abstract specification.

3 Weakest Precondition Semantics of Transitions

To define the weakest precondition semantics, we first introduce a function m
which associates an integer to each list of B-ASM transitions. It will be used to
define the semantics by induction.

Definition 2. For all B-ASM programs S, we define an integer m(S) by in-
duction on S, and for all lists

−→
S of B-ASM programs, we will write m(

−→
S ) for∑

S∈
−→
S
m(S):

– m(f(
−→
t ) := u) = 0;

– m(if A then S end) = 1 +m(S);
– m(par

−→
S end) = 1 +m(

−→
S );

– m(skip) = 1;
– m(f(

−→
t ) :∈ E) = 1;

– m(@x.S) = 1 +m(S);
– m(choice S or T end) = 1 +m(S) +m(T );
– m(any x where A then S end) = 1 +m(S).

We now define the weakest precondition predicate for each list of B-ASM
transitions. Lists are here used to take the parallel B-ASM transitions into ac-
count.

Definition 3. Let
−−−−−−−→
f(
−→
t ) := u denote the list of substitutions (fi(

−→
ti ) := ui)0≤i≤n.

For all lists
−→
S of B-ASM programs, we define the formula [

−→
S ]P by induction on

m(
−→
S ); let

−→
Z be the list

−−−−−−−→
f(
−→
t ) := u; we consider all cases according to definition

1:
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– [
−→
Z ]P =

{
P (
−−−−−−−−−−−−→
f\f C−{−→t 7→ u}) if the substitution is consistent;

P if not;

– [
−→
Z , if A then S end,

−→
T ]P = (A⇒ [

−→
Z , S,

−→
T ]P ) ∧ (¬A⇒ [

−→
Z ,
−→
T ]P );

– [
−→
Z ,par

−→
S end,

−→
T ]P = [

−→
Z ,
−→
S ,
−→
T ]P ;

– [
−→
Z , skip,

−→
T ]P = [

−→
Z ,
−→
T ]P ;

– [
−→
Z , f(

−→
t ) :∈ E,

−→
T ]P = ∀x.x ∈ E ⇒ [

−→
Z , f(

−→
t ) := x,

−→
T ]P ;

– [
−→
Z ,@x.S,

−→
T ]P = ∀x.[

−→
Z , S,

−→
T ]P ;

– [
−→
Z , choice S or T end,

−→
U ]P = [

−→
Z , S,

−→
U ]P ∧ [

−→
Z , T,

−→
U ]P ;

– [
−→
Z ,any x where A then S end,

−→
T ]P = ∀x.A⇒ [

−→
Z , S,

−→
T ]P .

The following theorem allows us to prove that the semantics of parallel B-
ASM transitions does not depend on the order of these transitions. Indeed, if
we alter the order of transitions in a list, the resulting formulas are syntacti-
cally different. However, the theorem states that these formulas are semantically
equivalent.

Theorem 1. For all lists
−→
S of B-ASM programs and for all permutations σ,

formula [
−→
S ]P is equivalent to formula [σ(

−→
S )]P .

Proof. We proceed by induction on m(
−→
S ); we remark that for all permutations

−→
S′ of

−→
S we have m(

−→
S ) = m(

−→
S′). Let us write

−→
S =

−→
Z , T,

−→
U where

−→
Z =

−−−−−−−→
f(
−→
t ) := u and T 6= f(

−→
t ) := u; in the same way, we write

−→
S′ =

−→
Z ′, T ′,

−→
U ′

where
−→
Z ′ =

−−−−−−−−→
f ′(
−→
t′ ) := u′ and T ′ 6= f ′(

−→
t′ ) := u′. We consider as an example

T = if A then V end and T ′ = f(
−→
t ) :∈ E; since formulas of the form [

−→
S ]P

are in positive occurrences in definition 3, the other cases are quite similar. By
definition we have:

[
−→
S ]P = (A⇒ [

−→
Z , V,

−→
U ]P ) ∧ (¬A⇒ [

−→
Z ,
−→
U ]P )

There is a permutation µ such that µ(
−→
Z , V,

−→
U ) =

−→
Z , T ′, V,

−→
U ′′; by induction hy-

pothesis, [
−→
Z , V,

−→
U ]P is equivalent to [

−→
Z , T ′, V,

−→
U ′′]P . In the same way, [

−→
Z ,
−→
U ]P

is equivalent to [
−→
Z , T ′,

−→
U ′′]P . Thus, we have:

[
−→
S ]P ⇔ (A⇒ [

−→
Z , T ′, V,

−→
U ′′]P ) ∧ (¬A⇒ [

−→
Z , T ′, V,

−→
U ′′]P )

By definition, we have:

[
−→
Z , T ′, V,

−→
U ′′]P = ∀x.x ∈ E ⇒ [

−→
Z , f(

−→
t ) := x, V,

−→
U ′′]P

and:
[
−→
Z , T ′,

−→
U ′′]P = ∀x.x ∈ E ⇒ [

−→
Z , f(

−→
t ) := x,

−→
U ′′]P

Thus, according to usual boolean tautologies, we have:

[
−→
S ]P ⇔ ∀x.x ∈ E ⇒ (A⇒ [

−→
Z , f(

−→
t ) := x, V,

−→
U ′′]P )∧(¬A⇒ [

−→
Z , f(

−→
t ) := x,

−→
U ′′]P )
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By induction hypothesis, [
−→
Z , f(

−→
t ) := x, V,

−→
U ′′]P is equivalent to [

−→
Z , V, f(

−→
t ) :=

x,
−→
U ′′]P ; thus, we have:

[
−→
S ]P ⇔ ∀x.x ∈ E ⇒ [

−→
Z , T, f(

−→
t ) := x,

−→
U ′′]P

There is a permutation ρ such that ρ(
−→
Z , T, f(

−→
t ) := x,

−→
U ′′) =

−→
Z ′, f(

−→
t ) := x,

−→
U ′;

by induction hypothesis, [
−→
Z , T, f(

−→
t ) := x,

−→
U ′′]P is equivalent to [

−→
Z ′, f(

−→
t ) :=

x,
−→
U ′]P . Hence we have [

−→
S ]P ⇔ [

−→
Z ′, T ′,

−→
U ′]P ; thus [

−→
S ]P is equivalent to [σ(

−→
S )]P .

4 Refinement of Programs

In Def. 3, we have defined the semantics for B-ASM transitions. Now, we have
to define the semantics for the associated program. The latter has the same
semantics as the program of the following form:

while
−−−−→
f ′ 6= f do

−−−−→
f ′ := f ;
S;
if
−−−−→
f ′ = f then terminate := 0 end

invariant I
variant V + terminate

end

In this program, we have introduced several notations:

–
−→
f denotes the list of variables;

–
−→
f ′ is a list of fresh variables which are used to save the values of

−→
f from the

previous state; they are of the same type as
−→
f augmented with special values

that denote undefinedness. For instance, in the machineMaximumASM(tab),
some clauses are implicitly extended:
• variables length′, i′, maxi′ and terminate are added to clause VARI-

ABLES;
• the following formulas are in clause INVARIANT:

length′ = size(tab) ∪ {⊥} ∧
i′ ∈ 1..length′ ∪ {⊥} ∧
maxi′ = Maxi(tab ↑ i′) ∪ {⊥} ∧
terminate ∈ {0, 1}

• in clause INITIALISATION, length′, i′, and maxi′ are initialized to ⊥,
and terminate is initialized to 1;

– I denotes the body of the INVARIANT clause;
– V denotes the body of the VARIANT clause;
– S denotes the body of the OPERATION clause.
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The proof obligation associated to the above-mentioned program is derived
from the classical proof obligations associated to WHILE substitutions in the B
method. Let us write B the loop body:

B
∆=
−−−−→
f ′ := f ; S ; if

−−−−→
f ′ = f then terminate := 0 end

In order to prove that the program establishes predicate P , we have to prove
that:

1. the loop body preserves the invariant:

I ∧
−−−−→
f ′ 6= f ⇒ [B]I (PO1)

2. the variant is well-typed:

I ⇒ V + terminate ∈ N (PO2)

3. the variant strictly decreases at each iteration step:

I ∧
−−−−→
f ′ 6= f ⇒ [n := V + terminate][B](V + terminate < n) (PO3)

4. when the loop terminates, the program establishes predicate P :

I ∧
−−−−→
f ′ = f ⇒ P (PO4)

Refinement Proof. The proof obligations (PO) associated to refinement are
of the following form:

1. [Init′]¬[Init]¬J (PO init)
2. I ∧ J ⇒ [Subst′]¬[Subst]¬J (PO op)

where Init represents the initialization substitutions, Subst the operation sub-
stitutions, and I the invariant in the abstract machine. Init′, Subst′, and J
denote the counterparts of Init, Subst, and I, respectively, in the refinement
machine. The use of negation allows non-determinism to be taken into account.
These two POs guarantee that the execution of the concrete initialization (the
concrete operation, respectively) is not in contradiction with the effects of the
abstract initialization (the asbtract operation, resp.).

For instance, in our example dealing with the maximum of an array of integer
values, the proof of (PO init) is straightforward. Double negation is not needed,
because no substitution is non-deterministic in this example. Since B-ASM pro-
grams mainly consist of a WHILE loop, (PO op) requires the decomposition of
[Subst′] into the four above-mentioned POs associated to programs.

Proof obligation (PO1) can be proved by a case analysis. Either the new
element in tab is a new maximum, in that case, invariant maxi = Maxi(tab ↑ i)
is preserved by substitution maxi := tab(i + 1), or the new element is not a
maximum, consequently the invariant is also preserved.

Proof obligation (PO2) is straightforward.
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For (PO3), the proof consists in applying i := i+ 1 at each step of iteration;
hence, the variant strictly decreases. Variable terminate allows us to decrease
the variant even in the last iteration step, when i = length, but just before−−−−→
f ′ = f .

In this example, predicate P in (PO4) is:

[maxi := Maxi(tab)](length = size(tab) ∧ i ∈ 1..length
∧ maxi = Maxi(tab ↑ i) )

The latter can be rewritten into:

length = size(tab) ∧ i ∈ 1..length ∧ Maxi(tab) = Maxi(tab ↑ i)
(PO4) is straightforward, since at each iteration step, we guarantee by the invari-
ant clause that Maxi restricted to the i first elements is effectively the maximum.
Once all the elements are analysed, Maxi(tab) = Maxi(tab ↑ length).

5 Conclusion

The B method and the Abstract State Machine Êmodel have their own strength:
proof correctness during the software development life cycle for the B method
and algorithmic completeness for ASM model.

By mixing the two models, we expect to conserve both the qualities of the B
method and the usability of ASMs. For this, we add the ASMs syntax to the B
language of substitution and give a semantics for the weakest precondition and
a semantics for the program obtained by refinement.

At the end of the process a new B0 program is obtained following strictly
the syntax of a π program of an ASM , moreover the process has followed the
proof correctness of B method refinement.

The challenge is now, to verify the efficiency of the new method in a real case
study and of course, to develop tools.
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Abstract. Approaches that use specifications, e.g., assertions, to detect erro-
neous program states are common. We have developed a novel specification-
based approach for data structure repair, which allows repairing erroneous ex-
ecutions in deployed software. The key novelty is our support for rich behavioral
specifications, such as those that relate pre-states with post-states to accurately
specify expected behavior and hence to enable precise repair.

1 Introduction
As software failures have become expensive and frequent, the need for creating new
methodologies that deliver reliable software at a lower cost has become urgent. Much
of the existing research effort is devoted to requirements, architecture, design, imple-
mentation and testing, activities that are performed before the deployment of a software
system. In contrast, little effort is devoted to developing methodologies that handle er-
rors that arise during system executions after the deployment.

While several different techniques utilize specifications to check correctness of pro-
grams before they are deployed, the use of specifications in deployed software is more
limited, largely taking the form of runtime checking where assertions form a basis for
detecting erroneous program states and terminating erroneous executions in failures.
The standard approach when an erroneous program state is detected at runtime, say due
to an assertion violation, is to terminate the program, debug it if possible, and re-execute
it. While this halt-on-error approach is useful for eliminating transient errors or for de-
bugging purposes, it does not present a feasible solution for deployed software that is
faulty and cannot be promptly debugged or re-deployed.

Recent work introduced constraint-based repair where data structure constraints
written using first-order logic [1] or as Java assertions [2] are used as a basis for re-
pairing erroneous states. However, data structure constraints are too weak a form of
specification for error recovery in general. To illustrate, in object-oriented programs,
the class invariant (which defines the data structure constraints for the valid objects of
the class) applies to the entry and exit points of all public methods—even though the
precise behaviors of the methods may be very different. For example, consider an erro-
neous implementation of a method to insert an element into a binary tree—an acyclic
data structure. Previous approaches [1, 2] to constraint-based repair would accept an
empty tree as a valid structure since it satisfies the acyclicity constraint. However, an
empty tree is unlikely to be a valid output of insert.

We have developed a specification-based approach for data structure repair, which
allows repairing erroneous executions in deployed software by repairing erroneous
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class LinkedList {
Node header;
int size; // number of nodes

static class Node {
Node next;
int elt; }

void remove(int x) { // erroneous implementation
// should remove all nodes that have element x
if (header == null) return;
Node pointer = header.next;
Node prevPointer = header;
while (pointer != null) {

if (pointer.elt == x) {
prevPointer.next = pointer.next;
pointer = pointer.next;
size--; }

else {
prevPointer = prevPointer.next;
pointer = pointer.next; } }

if (header.elt == x) {
// the next line should be un-commented
// header = header.next;
// the next line is incorrect; it should be "size--;"
size++; } } }

Fig. 1. Singly-linked list in Java. An erroneous remove method.
pred repOk(l: LinkedList){ // class invariant of LinkedList

all n:l.header.*next | n !in n.ˆnext // acyclicity
# l.header.*next = int l.size // size ok
all n, m: l.header.*next | int m.elt = int n.elt => n = m // unique elements }

pred remove_postcondition(This: LinkedList, x: Int){
repOk[This]
This.header.*next.elt - x = This.header‘.*next‘.elt‘ }

Fig. 2. Class invariant for LinkedList and post-condition for remove in Alloy.

states. The key novelty is the support for rich behavioral specifications, such as those
that relate pre-states with post-states to accurately specify expected behavior and hence
to enable precise repair. This informal extended abstract gives an example to illustrate
the repair problem (Section 2), defines the problem and states the basic ideas behind
our approach (Section 3), and concludes with future work (Section 4).

2 Example

To illustrate specification-based repair, consider a singly-linked list data structure (Fig-
ure 1). Each list object has a header node and a size field that caches the number of
nodes in the list. Each node has a next pointer and contains an integer element (elt).
The method remove removes all occurrences of the given integer (x) from the given list
(this). The user provides the class invariant for LinkedList and the post-condition
for remove in Alloy (Figure 2), which is used as a basis for repairing erroneous out-
puts. The class invariant requires that the list should be acyclic, contain unique integer
elements, and have correct size. The post-condition additionally requires that the output
should not include the element to remove. Back-tick (‘‘’) is syntactic sugar to repre-
sent post-state [4]. Note how the post-condition relates the set of list elements in the
post-state with those in the pre-state to precisely specify correctness of remove.
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To contrast with previous work [1,2], if we only use the class invariant (repOk) as a
basis of repair, the repaired output list could be any correct instance of singly linked list,
irrespective of its relationship with the pre-state. Our approach repairs faulty outputs of
the remove method including those that violate the class invariant as well as those that
fail to satisfy the pre- and post-condition relation.

3 Specification-based Data Structure Repair
We address the following repair problem: Let φ be a method postcondition that relates
pre- and post-states such that φ(r, t) if and only if pre-state r and post-state t satisfy
the post-condition. Given a valid pre-state u, and an invalid post-state s (i.e., !φ(u, s)),
mutate s into state s′ such that φ(u, s′).

Our approach is based on the view of a specification as a non-deterministic imple-
mentation, which may permit a high degree of non-determinism. The Alloy tool-set [3]
provides the enabling technology for writing specifications and systematically repair-
ing erroneous states. One initial technique that we developed is to transform the repair
problem into a constraint solving problem and leverage the Alloy tool-set as a solving
machine, ignoring the erroneous state. Although this technique provides a correct out-
put, it might be infeasible for larger states. Our key insight to improve this technique
is to use any correct state mutations by an otherwise erroneous execution to prune the
non-determinism in the specification, thereby transmuting the specification to an im-
plementation that does not incur a prohibitively high performance penalty. Moreover,
using the faulty post-state as the start point of the repair process avoids unnecessary per-
turbations during the repair process. We are working on extensions of this idea to build
an effective and efficient repair framework that supports rich behavioral specifications.

4 Conclusion and Future Work
We introduced a novel use of rich behavioral specifications for systematic data struc-
ture repair using the Alloy tool-set as an enabling technology. Our initial technique to
perform repair was to use the Alloy tool-set to solve the post condition independently
of the erroneous state. However, erroneous states likely contain valuable information
about expected outputs and can serve as the basis of the repair. We are developing new
algorithms that perform repair leveraging the currently erroneous state to prevent unnec-
essary perturbation in the data structure and improve repair accuracy and performance.
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Abstract. Cloud computing is a conceptual paradigm that is receiving
a great deal of interest from a variety of major commercial organisations.
By building systems which run within cloud computing infrastructures,
problems related to scalability and availability can be reduced, and, from
the point of view of consumers of such infrastructures, abstracted away
from. As such infrastructures tend to be shared, it is important that
access to the sub-components of each system is controlled. One of the
first languages for controlling access to services within a cloud is the
Amazon Web Services access policy language. In this paper we present
two formal models of this language—one in Z and one in Alloy—and
show how the Alloy model might be used to test properties of multiple
policies and to generate and test candidate policies.

1 Introduction

Cloud computing (see, for example, [1]) is a conceptual paradigm that is receiv-
ing a great deal of interest from a variety of major commercial organisations. By
building systems which run within cloud computing infrastructures, problems
related to scalability and availability can be reduced, and, from the point of
view of consumers of such infrastructures, abstracted away from. As such infras-
tructures tend to be shared, it is important that access to the sub-components
of each system is controlled.

Many cloud computing infrastructures have emerged over the past few years;
at the time of writing, Amazon Web Services (AWS) [2] is one of the most widely
used. AWS consists of a number of different components, which can be used in
combination or alone. One common usage model is to use Elastic Compute Cloud
(EC2) instances to process information and to use the Simple Queue Service
(SQS) [3] to handle requests and responses. For example, a language translation
service might involve an end-user initially submitting input to a web page. Then
the inputted string would form part of a request placed in a queue (the request
queue). The EC2 instance would consume messages from the queue, perform the
required task (in this case, translation), and then put a message containing the
result in a second queue (the response queue). The result will then be consumed
by the web site.
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If all of the sub-components of a system use the same security credentials, it is
possible to restrict access using an ‘all-or-nothing’ approach. However, there are
situations where more complex controls are appropriate. For example, there may
be a key requirement that a particular service is only available during certain
time periods. For this reason, the AWS access policy language was introduced,
which enables access to be restricted based on a number of factors, including
the time of the request and the originating IP address, as well as more common
factors, such as the action that is being performed and the resource that is being
acted upon. Currently, only the SQS service supports the AWS access policy
language, but there are plans for it to be used on additional components.

As the complexity of access control policies increases, there is a corresponding
increase in the risk that a mistake might be made when defining these policies.
The value of analysing such policies has been demonstrated by the work of others
in the community, such as Ryan and colleagues (see, for example, [4]) and Bryans
and Fitzgerald (see, for example, [5])).

In this paper we seek to reduce that risk with the appropriate application of
formal methods. We use a hybrid approach of using both the Z specification lan-
guage [6] and the Alloy modelling language [7]. Each language has its strengths
and weaknesses, with Z better suited to formal proof and Alloy being better
suited to automatic analysis. The differences in the languages reflect the inten-
tions of their creators with each having its place. In this paper the Z model is
used as a starting point for the Alloy model, which we use for the examples pre-
sented. From a pragmatic perspective, our choice of leveraging both languages
comes down to the fact that there may be some circumstances in which a fully
formal proof is necessary; typically, however, the excellent support for model
finding offered by Alloy will be appropriate.

In Section 2 we provide a necessarily brief description of the AWS access
policy language. In Section 3 we present a model of the AWS policy language
written in the Z specification language. In Section 4 we translate (manually)
the Z model into the Alloy language and also extend the model to support the
specifics of policies written for the SQS service. We give two examples of the
use of the Alloy model in Section 5. In the first example we look at a scenario
where multiple queues are used as part of a simple system; we then use the Alloy
Analyzer to find examples of situations in which the system will fail to perform
as required. In the second example we look at the use of the Alloy Analyzer
to assist in the creation of policies that meet a set of complex requirements.
By creating a set of requests with known outcomes we can generate candidate
policies. Finally, in Section 6, we summarise the contribution and explore avenues
of potential future work.

2 Background

The AWS access policy language allows one to construct policies that have a
tree-like structure, consisting of sub-components, each of which may give an
independent result—with these results being combined systematically to arrive
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at a final decision. In this respect, it has similarities with the OASIS standard
XACML (eXtensible Access Control Markup Language) [8].

The AWS access policy language makes permit or deny decisions based on
the identity of the user, the action they are trying to perform, and the resource
they are trying to act on. Users are identified by a principal, which is used as part
of the authentication process and is tied to a specific AWS account. In addition,
a number of environmental factors may be used as part of the decision making
process, these are identified by the use of keys.

Each policy consists of a number of statements which contain a description
of the requests they apply to, plus an effect, which may be permit or deny. Each
statement contains lists of actions, lists of resources and lists principals, plus a
number of conditions which must be met. The conditions are related to the key
values of the request.

If multiple statements match a request, then deny effects take precedence
over permit effects. If no statements match, then the effect is referred to as a
soft deny: that is to say that final effect will be deny unless another policy has
an effect of permit.

Conditions have a type, which is a matching relation such as string equality
or ‘before’ on date-time values. Conditions also contain a number of clauses, all
of which must hold for the condition to be met. Each clause consists of a key
and a number of values: if any of the values match the request’s key value then
the clause holds.

When writing a policy for use with the SQS service a number of additional
restrictions apply. Each policy may only contain statements relating to a sin-
gle queue, the identity of which is used as the resource value. Only the fol-
lowing actions may be used: ReceiveMessage; SendMessage; DeleteMessage;
ChangeMessageVisibility; and GetQueueAttributes.

The only available keys are the standard keys, which are: CurrentTime
(DateTime); SecureTransport (Boolean); SourceIP (IP Address); and also
UserAgent (String).

The available condition types are dependent on the types of the available
keys, and include DateEquals, DateLessThan, IpAddress, and StringEquals.

In addition, there is also a restriction that all policies and statements are
uniquely identified.

The following example (from [3]) illustrates a policy in which all users are
given ReceiveMessage permission for the queue named 987654321098/queue1,
but only between noon and 3:00 p.m. on January 31, 2009.

{
"Version": "2008-10-17",
"Id": "Queue1_Policy_UUID",
"Statement":

{
"Sid":"Queue1_AnonymousAccess_ReceiveMessage_TimeLimit",
"Effect": "Allow",
"Principal": {

"AWS": "*"
},
"Action": "SQS:ReceiveMessage",
"Resource": "/987654321098/queue1",
"Condition" : {
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"DateGreaterThan" : {
"AWS:CurrentTime":"2009-01-31T12:00Z"

},
"DateLessThan" : {

"AWS:CurrentTime":"2009-01-31T15:00Z"
}

}
}

}

One of the benefits of this language is that, when compared to, for example,
XACML, it is relatively streamlined: making a mapping to a formal representa-
tion more straightforward than would typically be the case.

3 A Z representation

In this section we describe the structure of an AWS access policy using the Z
specification language. The model represents all aspects of the policy language,
but does not include any explicit value types. To ease readability, some types
are used before they are defined.

Each policy has a unique identifier, a policy language version number (which
currently has no practical impact upon policies or their evaluation, but is in-
cluded for the sake of completeness) and a non-empty list of statements. As the
order of statements has no effect on request evaluation, the list is represented as
a set. There is currently only one version of the policy language, represented by
the constant v1.

[PolicyID ]

Version ::= v1

Policy
version : Version
id : PolicyID
statements : P1 Statement

Each statement places conditions upon the requests to which it applies: if
the statement applies, it may have an effect which can be to either allow or deny
access. During evaluation, a deny decision may be be the result of a statement
with an effect of deny—called a hard deny—or the absence of an applicable
statement with an effect of allow—called a soft deny. The absence of an effect in
a statement is modelled as a soft deny. In our model, we have explicitly captured
the soft deny effect; there is no need to model the hard deny effect explicitly.

Similarly to a policy, each statement has a unique identifier. It also details
the principals, actions and resources to which it applies. The principals represent
the identity of the requester, the actions represent the action to be performed,
and the resource represent the entity that the action will be performed on.
Each of these can take multiple values and are represented by non-empty sets.
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Finally, a statement may contain a number of conditions which further restrict
the applicability of a statement.

[StatementID ,Principal ,Action,Resource]

Effect ::= Allow | Deny | SoftDeny

Statement
sid : StatementID
effect : Effect
principals : P1 Principal
actions : P1 Action
resources : P1 Resource
conditions : P Condition

Conditions consist of a matching relation, referred to as the type of the
condition, and a number of clauses describing the values to be matched. Each
clause contains a key and a number of values. Each key represents a specific
piece of data about the request, such as the current time or the IP address from
which the request originated. These are compared with concrete values using the
matching relation corresponding to the type of the condition.

Condition
type : CondType
clauses : P1 Clause

[Key ,Value]

Clause
key : Key
values : P1 Value

CondType
match : Value ↔ Value

As well as having a model of the policy, it is also necessary to model a request.
Each request contains a single principal, action and resource. In addition, the
keys function provide the value associated with each key. It is assumed that the
keys function is total.

Request
principal : Principal
action : Action
resource : Resource
keys : Key → Value



48 David Power, Mark Slaymaker, and Andrew Simpson

At the top level, a request is evaluated against a set of policies: if any policy
evaluates to Deny or no policy evaluates to Allow , then the result is a Deny . If
there are no Denys and at least one Allow , then the result is Allow .

EvalPolicies : Request → (P Policy)→ {Allow ,Deny}

∀ r : Request • EvalPolicies(r) =
(λ pols : P Policy • Deny)
⊕
(λ pols : P Policy |

(∃ p : pols • EvalPolicy(r)(p) = Allow) • Allow)
⊕
(λ pols : P Policy |

(∃ p : pols • EvalPolicy(r)(p) = Deny) • Deny)

The evaluation of a policy is dependent on the evaluation of the statements it
contains. When no statement results in a Deny or Allow , the result is a SoftDeny .

EvalPolicy : Request → Policy → Effect

∀ r : Request • EvalPolicy(r) =
(λ p : Policy • SoftDeny)
⊕
(λ p : Policy |

(∃ s : p.statements • EvalStatement(r)(s) = Allow) • Allow)
⊕
(λ p : Policy |

(∃ s : p.statements • EvalStatement(r)(s) = Deny) • Deny)

If a request matches the constraints of a statement, then the evaluation re-
sults in the value of the effect attribute, otherwise it evaluates to soft deny. For
a request to match the constraints of a statement, the principal, action and re-
source of the request must each be contained in the corresponding set in the
statement; in addition, all of the conditions must be met.

EvalStatement : Request → Statement → Effect

∀ r : Request • EvalStatement(r) =
(λ s : Statement • SoftDeny)
⊕
(λ s : Statement | (r , s) ∈ MatchStatement • s.effect)

MatchStatement : Request ↔ Statement

MatchStatement =
{r : Request ; s : Statement |

r .principal ∈ s.principals ∧
r .action ∈ s.actions ∧
r .resource ∈ s.resources ∧
(∀ c : s.conditions • (r , c) ∈ MeetsCondition)}
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To meet a condition, each of the clauses must be met using the matching
relation specified by the type attribute. The key of the clause defines which of
the request keys to use for each clause. For a match to be made, at least one of
the clause values must match the key value.

MeetsCondition : Request ↔ Condition

MeetsCondition =
{r : Request ; c : Condition |

(∀ cl : c.clauses •
(∃ v : cl .values • (r .keys(cl .key), v) ∈ c.type.match))}

4 Alloy model

Having presented our Z description of the AWS access policy language, we
now consider an Alloy representation, which is, via the Alloy Analyzer, more
amenable to automatic analysis. We also describe domain-specific extensions
for the SQS service. In Section 5 we will use the extended model both to find
example policies and to test the properties of existing policies.

The domain-specific extensions are based around the types of values that can
be used in a policy, the matching relations for the values, and the request keys
used to access the values. In addition, the actions that can be performed are
domain-specific. All of these are entities declared using abstract signatures.

abstract sig Value, Key, Action {}
abstract sig CondType {

match : Value -> Value
}

The remaining signatures required for the policies are translated directly
from the Z model.

sig PolicyId {}
abstract sig Version {}
one sig v1 extends Version {}
sig Policy {

version : Version,
pid : PolicyId,
statements : some Statement

}
sig StatementId, Principal, Resource {}
abstract sig Effect {}
one sig Allow, Deny, SoftDeny extends Effect {}
sig Statement {

sid : StatementId,
effect : Effect,
principals : some Principal,
actions : some Action,
resources : some Resource,
conditions : set Condition

}
sig Condition {

type : CondType,
clauses : some Clause

}
sig Clause {
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Fig. 1. Policy metamodel

key : Key,
values : some Value

}
sig Request {

principal : Principal,
action : Action,
resource : Resource,
keys : Key -> one Value

}

The metamodel of the basic policy signatures is shown in Figure 1.
The evaluation logic for the Alloy model is also a translation of that of the

Z model.

fun EvalPolicies ( r : Request, ps : set Policy ) : Effect {
(some p : one ps | EvalPolicy[r,p] = Deny) => Deny else
((some p : one ps | EvalPolicy[r,p] = Allow) => Allow else Deny)

}
fun EvalPolicy ( r : Request, p : Policy ) : Effect {

(some s : one p.statements | EvalStatement[r,s] = Deny) => Deny else
((some s : one p.statements | EvalStatement[r,s] = Allow) => Allow else SoftDeny)

}
fun EvalStatement ( r : Request, s : Statement ) : Effect {

MatchStatement[r,s] => s.effect else SoftDeny
}
pred MatchStatement ( r : Request, s : Statement ) {

r.principal in s.principals
r.action in s.actions
r.resource in s.resources
all c : one s.conditions | MeetsCondition[r,c]

}
pred MeetsCondition ( r : Request, c : Condition ) {

all cl : one c.clauses |
some v : one cl.values | (r.keys[cl.key] -> v) in c.type.match

}

SQS policies support five types of actions (ReceiveMessage, etc.—as listed
in Section 2). The request keys are: CurrentTime, which is a date-time value;



On the modelling and analysis of Amazon Web Services access policies 51

SecureTransport, which is a Boolean value; SourceIP, which is an IP address
value; and UserAgent, which is a string value. For strings and IP addresses, it
is possible for clauses to contain either regular expressions or IP address ranges
respectively. In these cases, requests contain IPSingle and StringSingle values,
and clauses contain IPRange and StringRange values—both of which contain a
range attribute, which is the set of values either in the IP range or that match
the regular expression.
one sig ReceiveMessage, SendMessage, DeleteMessage,

ChangeMessageVisibility, GetQueueAttributes extends Action {}
one sig CurrentTime, SecureTransport, SourceIP, UserAgent extends Key {}
abstract sig Boolean extends Value {}
one sig True, False extends Boolean {}
sig DateTime extends Value {}
sig IPSingle extends Value {}
sig IPRange extends Value { range : some IPSingle }
sig StringSingle extends Value {}
sig StringRange extends Value { range : some StringSingle }

The condition types depend on the types of values associated with the keys
used in the clauses. For Boolean values there is a single condition type called
Bool, which represents logical equivalence. For date-time values, there are condi-
tion types for comparing date-times include equality, less than and greater than.
For IP addresses, there are condition types for being within or outside an IP
range. Similarly, strings have condition types for matching regular expressions,
as well as equality. In order to provide ordering for date-times, a standard Alloy
ordering is applied to the Value signature.

The definitions of three of the condition types are given below.
one sig DateEquals extends CondType {} { match = { d1 , d2 : DateTime | d1 = d2 } }
one sig DateLessThan extends CondType {} { match = { d1 , d2 : DateTime | lt[d1,d2] } }
one sig IPAddress extends CondType {} {

match = { ip1 : IPSingle , ip2 : IPRange | ip1 in ip2.range}
}

As well as specifying the actions, condition types and values in a policy.
The SQS policy documentation also adds some constraints to the policies. These
include uniqueness of identifiers and limiting each policy to a single resource.
These constraints are added as facts in the Alloy model. In addition, a fact has
been added to ensure that the values returned by the keys function are of the
correct type.
fact TypedKeys {

Request.keys[CurrentTime] in DateTime
Request.keys[SecureTransport] in Boolean
Request.keys[SourceIP] in IPSingle
Request.keys[UserAgent] in StringSingle

}

5 Examples

In this section we give two examples of use of the Alloy model. In the first, the
properties of multiple policies are tested to find potential problems caused by
the use of distributed access control. In the second, we look at the feasibility of
using Alloy to generate candidate policies based on a set of test cases.
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5.1 Two-policy test

In this example it is assumed that there are two queues: the first is used by an
application to submit jobs to an EC2 instance. The results of the jobs are placed
by the EC2 instance into a second queue which is then read by the application.
The use of two queues in this way is one of the basic scenarios described in the
SQS documentation.

There are exactly two principals used in this example: appPrincipal and
ec2Principal. The resources are restricted to the two queues requestQueue
and reponseQueue.

The policy for the first queue (policy1) contains two statements: the first
allows the application to send messages providing the current date-time is less
than some unspecified value; the second allows the EC2 instance to receive mes-
sages with an identical restriction on date-time values. The policy for the second
queue (policy2) is identical to the first with the principals reversed, so the EC2
instance can send and the application can receive.

-- Actors
one sig appPrincipal, ec2Principal extends Principal {}
one sig requestQueue, responseQueue extends Resource {}
one sig pid1, pid2 extends PolicyId {}
one sig sid1, sid2, sid3, sid4 extends StatementId {}
-- Policy
one sig clause1 extends Clause {} { key = CurrentTime }
one sig condition1 extends Condition {} { type = DateLessThanEquals && clauses = clause1 }
one sig statement1 extends Statement {} {

sid = sid1 && effect = Allow && principals = appPrincipal
actions = SendMessage && resources = requestQueue && conditions = condition1

}
one sig statement2 extends Statement {} {

sid = sid2 && effect = Allow && principals = ec2Principal
actions = ReceiveMessage && resources = requestQueue && conditions = condition1

}
one sig policy1 extends Policy {} {

version = v1 && pid = pid1
statements = statement1 + statement2

}
one sig statement3 extends Statement {} {

sid = sid3 && effect = Allow && principals = ec2Principal
actions = SendMessage && resources = responseQueue && conditions = condition1

}
one sig statement4 extends Statement {} {

sid = sid4 && effect = Allow && principals = appPrincipal
actions = ReceiveMessage && resources = responseQueue && conditions = condition1

}
one sig policy2 extends Policy {} {

version = v1 && pid = pid2
statements = statement3 + statement4

}

To test the policies, we assume that two requests are made: the first is a
request to send a message to the request queue; the second is to receive a message
from the response queue. We then test a predicate that states that there exists
a principal who is permitted to perform the first request but is not permitted to
perform the second request. That is to say that there exists a principal who can
send a message but cannot subsequently read the results.

one sig request1 extends Request {} { action = SendMessage && resource = requestQueue }
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one sig request2 extends Request {} { action = ReceiveMessage && resource = responseQueue }
pred WriteButNotRead {

request1.principal = request2.principal
lt[request1.keys[CurrentTime],request2.keys[CurrentTime]]
EvaluatePolicy[request1, policy1] = Allow
EvaluatePolicy[request2, policy2] != Allow

}

The analyzer can find a counter-example to the predicate but requires at
least 6 values, which include, True, False, an IPSingle, a StringSingle and
two DateTime values. The IPSingle and StringSingle values are required as
there must be a value for each of the four request keys. The two DateTime
values are needed to meet the constraint that the first request happens before
the second request. The unconstrained entities of the instance are represented
in tree format below.

clause1$0
field key

CurrentTime$0
field values

DateTime$1

request1$0
field keys

CurrentTime$0 -> DateTime$1
SecureTransport$0 -> False$0
SourceIP$0 -> IPSingle$0
UserAgent$0 -> StringSingle$0

field principal
appPrincipal$0

request2$0
field keys

CurrentTime$0 -> DateTime$0
SecureTransport$0 -> True$0
SourceIP$0 -> IPSingle$0
UserAgent$0 -> StringSingle$0

field principal
appPrincipal$0

As can be seen, one failure case is that the first request is made at the same
date-time as the value in the clause. As the second request must come after the
first, it will fail. It should be noted that in this instance, DateTime$1 comes
before DateTime$0 in the ordering.

5.2 Policy creation

In this example, the assumption is that a user is trying to construct a policy
called candidate that meets three conditions: that only the application principal
can read from queue1; that only the EC2 principal can send messages to queue1;
and that nobody should be allowed to delete messages, change message visibility
or get queue attributes from any queue.

assert OnlyAppCanReceive {
all r : Request | r.action != ReceiveMessage || r.resource != queue1 ||

(r.principal = appPrincipal <=> EvaluatePolicy[r, candidate] = Allow)
}
assert OnlyEc2CanSend {
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all r : Request | r.action != SendMessage || r.resource != queue1 ||
(r.principal = ec2Principal <=> EvaluatePolicy[r, candidate] = Allow)

}
assert noDeleteChangeAttr {

no r : Request |
r.action in DeleteMessage + ChangeMessageVisibility + GetQueueAttributes &&
EvaluatePolicy[r, candidate] = Allow

}

We could use the Alloy Analyzer to find a policy that meets all of the
assertions—but it is more likely to find a set of requests that avoided the con-
straints than a policy that met them in all cases. Instead, our approach involves
creating a set of concrete examples for which the desired result was known. Two
sets of requests were created: one set, which should always be successful and
another set that should always fail.

one sig request1 extends Request {} { action = ReceiveMessage && principal = appPrincipal }
one sig request2 extends Request {} { action = SendMessage && principal = ec2Principal }
fun success : Request { request1 + request2 }
one sig request3 extends Request {} { action = ReceiveMessage && principal = ec2Principal }
one sig request4 extends Request {} { action = SendMessage && principal = appPrincipal }
fun failure : Request { request3 + request4 }
pred FindPolicy(generated : Policy) {

all r : success | EvaluatePolicy[r, generated] = Allow
all r : failure | EvaluatePolicy[r, generated] != Allow

}

The FindPolicy predicate can be used to find a candidate policy which
gives the correct results for the examples given. The candidate policy can then
be tested against the three original constraints to find examples of requests for
which it gives incorrect results. These requests can then be added to the list
of examples and a new candidate policy generated. For example, after the first
iteration, the following request should have resulted in success but did not; as
such, it was added to the set of successful requests.

one sig request5 extends Request {} {
action = ReceiveMessage && principal = ec2Principal && resource = queue1
keys[CurrentTime] = dateTime0 && keys[SecureTransport] = True
keys[SourceIP] = ipSingle0 && keys[UserAgent] = stringSingle0

}

After six iterations, a candidate policy is found for which all three predicates
hold when tested up to a size of 20.

one sig sid0 extends StatementId {}
one sig statement0 extends Statement {} {

actions = ReceiveMessage
conditions = none
effect = Allow
principals = appPrincipal
resources = resource0
sid = sid0

}
one sig sid1 extends StatementId {}
one sig statement1 extends Statement {} {

actions = SendMessage
conditions = none
effect = Allow
principals = ec2Principal
resources = resource0
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sid = sid1
}
one sig pid0 extends PolicyId {}
one sig candidate extends Policy {} {

pid = pid0
version = v1
statements = statement0 + statement1

}

This approach clearly has its limitations: in the general case, there is no
guarantee that the number of requests required to generate a policy that meets
the constraints will be of a practical size. However, if it is possible to create a
policy that meets the constraints which contains a small number of statements
and conditions, then the required number of tests is likely to be sufficiently small.
Certainly, we envisage this test-based approach as being accessible to policy
writers, and having the potential to provide some degree of formal assurance in
policy construction.

6 Discussion

Cloud computing is a new computing paradigm which is gaining popularity.
Computing systems built within a cloud infrastructure are constructed from
multiple interacting sub-components, and access control languages can be used
to restrict the interaction between these sub-components.

We have built formal models of the access policy language used within the
Amazon Web Services cloud computing infrastructure. Specifically we have ex-
plored policies written for the Simple Queue Service. Using the Alloy Analyzer
we have been able to explore properties of specific combinations of policies. We
have also been able to use the Alloy Analyzer to assist in the construction of new
policies by using sets of requests which result in known access control decisions.

As access control decisions are a security-critical function it is important that
policy writers have some degree of assurance with respect to their correctness.
Previous work in this area has centred around simple access control systems such
as Role-Based Access Control [9, 10]. Attempts at modelling the significantly
more complex XACML (see, for example, [11], [4], and [12]) have all resulted in
partial models which avoid some of the more complex elements such as conditions
and/or XPATH queries. In this paper we have presented a model of the whole
language (which is, admittedly, less complex than XACML) that is suitable
for analysis. By providing a model of the whole language it becomes possible
to analyse existing real-world systems instead of placing restrictions on future
systems so that analysis will be possible. This gives the model wide applicability
to the rapidly increasing number of systems built using Amazon Web Services.

While the Alloy Analyzer can find instances that meet a complex set of
predicates, it is not capable of simultaneously finding an instance of a policy and
testing its properties against all possible requests of bounded size. Instead it will
deliberately avoid requests that would break the predicates and a hence will find
a policy of limited application. By separating the two steps, it is possible to build
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up a set of requests that will test different aspects of the predicates resulting in
increasingly applicable candidate policies. By testing candidate policies against
the original predicates new requests can be found which test different aspects of
the predicates.

One area of further work is to combine the model of the AWS policy language
with similar models for RBAC and XACML. This will give the opportunity
to explore the relationships between the models, with an ultimate goal of the
automatic translation of policies from one language to another. It will also be
useful when modelling the types of complex heterogeneous systems that are
encouraged by cloud computing. A second avenue of further work is to consider
the relationship between the Alloy and Z models (with a more concrete Z model
capturing the specifics of SQS policies). In particular, we will explore the mutual
benefits to be afforded through a combination of model finding and theorem
proving.
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Alloy [Jac02a] is a widely adopted relational modeling language. Its appeal-
ing syntax and the support provided by the Alloy Analyzer [Jac02b] tool make
model analysis accessible to a public of non-specialists. A model and property
are translated to a propositional formula, which is fed to a SAT-solver to search
for counterexamples. The translation strongly depends on user-provided bounds
for data domains called scopes – the larger the scopes, the more confident the
user is about the correctness of the model. Due to the intrinsic complexity of
the SAT-solving step, it is often the case that analyses do not scale well enough
to remain feasible as scopes grow.

ParAlloy exploits the possibility of splitting the SAT formula, thus allowing
for parallel SAT-solving of Alloy models. Three of its important characteristics
are:

1. Its core component is a parallel solver for arbitrary propositional formu-
las –not necessarily in CNF– based on problem decomposition, and making
a novel use of BEDs [AH02] for subproblem representation and manipu-
lation, Minisat [ES03] for subproblem analysis, and MPI [SOHL+98] for
inter-process communication.

2. Its Alloy-specific enhancements further improve (parallel) analyzability by
using knowledge obtained from the models to assist splitting decisions.

3. For valid properties (the UNSAT case), the speedups allowed the analysis
of Alloy properties (such as some assertions in [Zav06]) that exceed the
current capabilities of the Alloy Analyzer. For invalid properties, test case
generation or iterative model refinement (the SAT case), parallel analysis of
search space paths often leads to much higher speedups, since its exhaustion
is unnecessary.
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Abstract. Given a program and its correctness specification, scope-bounded 
checking encodes control-flow and data-flow of bounded code segments into 
declarative formulas and uses constraint solvers to search for correctness 
violations. For non-trivial programs, the formulas are often complex and 
represent a heavy workload that can choke the solvers. To scale scope-bounded 
checking, our previous work introduced an incremental approach that uses the 
program’s control-flow as a basis of partitioning the program and generating 
several sub-formulas, which represent simpler problem instances for the 
underlying solvers. We have developed a new approach that optimizes 
incremental checking using the program’s data-flow, specifically variable-
definitions. We expect that splitting different definitions of the same variable 
into sub-programs will reduce the number of variables in the resulting formulas 
and the workload to the backend solvers will be effectively reduced.  

1   Introduction 

In software verification, scope-bounded checking [2] of programs has become an 
effective technique for finding subtle bugs. Given bounds (that are iteratively relaxed) 
on input size and length of execution paths, the code of a program is translated into a 
relational logic formula, and a conjunction of this formula with the negation of the 
post condition specification ( )Pre translate Proc Post    is solved using off-the-

shelf SAT solvers. A solution to this formula corresponds to a counterexample. 
Traditional scope-bounded checking [1] translates the bounded code segment of 

the whole program into one input formula. For non-trivial programs, the translated 
formulas can be quite complex and the solvers can fail to find a counterexample in a 
desired amount of time. When a solver times out, typically there is no information 
about the likely correctness of the program or the coverage of the analysis completed. 

Recently, we introduced an incremental approach based on the program’s control-
flow to increase the efficiency and effectiveness of scope-bounded checking [3].  
The key idea is to partition the set of executions of the bounded code fragment into a 
number of subsets and encode each subset into a sub-formula. We split the program 
into smaller sub-programs, which are checked according to the correctness 
specification. Thus, the problem of scope-bounded checking for the given program 
reduces to several sub-problems, where each sub-problem requires the constraint 
solver to check a less complex formula.  

The splitting strategy in our previous work [3] focuses solely on the program’s 
control-flow, and is therefore limited to the syntactical structure of the program and 
fails to exploit the program semantics. 
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Since the complexity of the formulas comes from both the data-flow and the 
control-flow, we hypothesize that the use of data-flow in defining splitting strategies 
is likely to further reduce the workload of the constraint solvers. We introduce a 
splitting strategy based on variable-definitions. Specifically, we split the program 
based on different definitions of the same variable into sub-programs, which leads to 
a reduction in the number of variables in the resulting sub-formulas. The rationale 
behind this is that decrease in the number of definitions for a variable would reduce 
the number of intermediate variable names and thus the number of frame conditions 
introduced in data flow encoding. 

2   Example 

Suppose we want to check the contains() method of class IntList (Figure 1 (a)). 
An object of IntList represents a singly-linked list. The header field points to 

the first node in the list. Objects of the inner class Entry represent list nodes. The 
value field represents the (primitive) integer data in a node. The next field points to 
the next node in the list. Figure 1 (b) shows an instance of IntList. 

Consider checking the method contains() of class IntList. Assume a 
bound on execution length is one loop unrolling. Figure 2(a) shows the program and 
its computation graph [2] for this bound. 

Our program splitting strategy is variable-definition based. Given a variable in the 
computation graph, we split the graph into multiple sub-graphs such that each sub-
graph has at most one definition for the variable ,that can reach the exit statement.The  
definition of this variable in each  sub-graph is different.  

In Figure 2 (a), the definition of variable this and key is empty set {}. Definitions 
of variable return is statement set {4, 8, 11}, and definition of variable e is statement 
set {1, 5, 9}. All of these definitions can reach the exit statement.  

Suppose we select definitions of variable e (the most modified variable) to split the 
computation graph, we construct three sub-programs: Figure 2(b), 2(c), and 2(d). 
Each sub-program only contains one definition of variable e.  

3   Summary 

Scalability is a key challenge for scope-bounded checking. For non-trivial programs, 
the formulas translated from control-flow and data-flow can be quite complex and the  

   
(a)                     (b) 

Figure 1. Class IntList (contains() method and an instance). 
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heavy workload can choke the solvers. Our previous work used control-flow as a 
basis of an incremental approach to scope-bounded checking by splitting the program 
into smaller sub-programs and checking each sub-program separately, and 
demonstrated significant speed-ups over the traditional approach. We recently 
developed a new splitting strategy based on data-flow, specifically variable 
definitions, to optimize the incremental approach. We believe that use of variable 
definitions can effectively reduces the number of variables the complexity of the 
ensuing formulas and provides more efficient analysis. 

Acknowledgment: This material is based upon work funded in part by NSF 
(Grants IIS-0438967, CCF-0702680, and CCF-0845628) and AFOSR (FA9550-09-1-
0351). 
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  public boolean  
  constains(int key) 
   { 
1 : Entry e = this.header; 
2 : if (e != null){ 
3 :  if (e.value == key){ 
4 :   return true; 
     } 
5 :  e = e.next; 
6 :  if (e != null){ 
7 :   if (e.value == key){ 
8 :    return true; 
      } 
9 :   e = e.next; 
     } 
10:  assume(e == null); 
    }  
11: return false; 
0 :}  

(a) 

  public boolean  
  sub1(int key) 
   { 
1 : Entry e = this.header; 
2 : if (e != null){ 
3’:  assume (e.value==key) 
4 :   return true; 
      
5 :   
6 :   
7 :   
8 :   
       
9 : 
      
10:  
    }  
11: return false; 
0 :}  

(b) 

  public boolean  
  sub2(int key) 
   { 
1 : Entry e = this.header; 
2’: assume (e != null); 
3”: assume !(e.value==key);
4 :  
     
5 :  e = e.next; 
6 :  if (e != null){ 
7’:   assume(e.value==key);
8 :   return true  
     } 
9 :   
      
10:   
      
11: return false; 
0 :}  

(c) 

 
  public boolean  
  sub3(int key) 
  { 
1 : Entry e = this.header; 
2’: assume(e != null); 
3”: assume !(e.value==key); 
4 :  
     
5 : e = e.next; 
6’: assume (e != null); 
7”: assume !(e.value==key); 
8 : 
      
9 : e = e.next; 
 
10: assume(e == null); 
     
11: return false; 
0 :}  

(d) 

Figure 2. Splitting of program contains() based on definitions of variable e. Broken lines in 
sub-graph indicate edges removed constructing this sub-program during splitting. Gray nodes in 
a sub-graph denote that a branch statement in original program has been transformed into an 
assume statement. In programs below computation graph, the corresponding statements are 
show in Italic. Black nodes denote the statements removed during splitting. Subgraph (a) is 
program contains() and its computation graph after one-round unrolling. At exit, there are 
three definitions of variable e: Statement 1, 5, 9. Subgraph (b) is based on definition at 
statement 1. Subgraph (c) is based on definition at statement 5. Subgraph (d) is based on 
definition at statement 9. 
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Abstract. Feature-oriented modelling is a well-known approach for Soft-
ware Product Line (SPL) development. It is a widely used method when
developing groups of related software. With an SPL approach, the de-
velopment of a software product is quicker, less expensive and of higher
quality than a one-off development since much effort is re-used. However,
this approach is not common in formal methods development, which is
generally high cost and time consuming, yet crucial in the development
of critical systems. We present a method to integrate feature-oriented de-
velopment with the formal specification language Event-B. Our approach
allows the user to map a feature from the feature model to an Event-B
component, which contains a formal specification of that feature. We also
present some patterns, which assist the user in the modelling of Event-
B components. We describe a composition process which consists of the
user selecting an instance in the feature model and then constructing this
instance in Event-B. While composing, the user may also discharge new
composition proof obligations in order to ensure the model is consistent.
The model is then constructed using a number of composition rules.

1 Introduction

Current critical systems have become more complex and more common, which
requires them to be developed more efficiently and preferably with the applica-
tion of formal methods to ensure a safer system. The development with formal
methods is very time-consuming and costly, so in many cases formal methods
are not used. In our work we use the formal method Event-B [1], which is based
on first-order logic and set theory. It is structured into a dynamic part (describ-
ing system behaviour) and a static part (describing contant data and types).
The dynamic part is referred to as a machine, and the static part is called a
context. Event-B is supported by the open tool Rodin 1. In non-critical systems,
it is common to use SPL development techniques to save time and develop bet-
ter software faster. One such approach is feature modelling [2], which is used
to structure a set of related software products into common and variable re-
quirements, referred to as features. The feature diagram can be used to generate

1 The continued development of the Rodin toolset is funded by the EU research project
ICT 214158 DEPLOY (www.deploy-project.eu).
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instances of the software family; this is done by the selection of different features
within the diagram.

Currently, the development of Event-B models is a time-consuming task,
which requires a lot of proof. Our motivation is to reduce the development time
and to considerably reduce reproof by reusing Event-B components for which
proof obligations have been discharged. During the process of composition, com-
position proof obligations can be discharged. By experimentation we have shown
that a lot of the original proof obligations do not have to be reproved during
composition, thus saving a lot of prover resources.

An extended version of this paper is available from [3].

2 Process

In Figure 1 we present the composition process. The feature model is formed by
features which may be associated with Event-B components. The composition
process entails a subset of features to be selected from the feature model to form a
feature model instance, thereby selecting several of these Event-B components.
These components are composed pair-wise, and composition proof obligations
can be discharged to prove properties and to ensure consistency of the compo-
sition. The final Event-B machine represents the formal specification which is
associated with the feature model instance and is obtained by composing these
components.

Fig. 1. Overview of Composition Process

2.1 Integration of Feature Models and Event-B

In order to link feature models with Event-B, we develop Event-B components
which represent features in a feature model and that can be linked to them by
name. Only leaf node features can be mapped to an Event-B component. We
have developed a number of Event-B modelling patterns which provide guidelines
that help the construction of single Event-B components. An Event-B component
may consist of zero or more contexts, but must be consistent and independent
of any other components. Refinement is also currently not supported. All proof
obligations for a component must be discharged.
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2.2 Proof and Composition

Composition of components is n-wise, if more than two features that are mapped
to components are selected in the feature model. The composition process, how-
ever is pair-wise. This means that always two components are composed. All
proof obligations for a component have been discharged during the creation of
a component, however, when composing two components, new proof obligations
may come up. We will refer to these as composition proof obligations. Proof
obligations that are only concerned with one component are referred to as com-
ponent proof obligations.

Composition proof obligations are proof obligations that can be discharged
during composition of two components. They are based on component proof
obligations and their task is to reduce reproof of component proof obligations.

Once composition proof obligations have been discharged, the two compo-
nents can be composed. We have developed a number of composition rules that
can be applied to the composition of Event-B contexts and machines. The out-
come of composition is one single Event-B model.

3 Conclusion and Future Work

Our work demonstrates the integration of feature models and Event-B, thus
enabling SPL development for formal methods and providing a way to prove
certain properties about a composition. Currently our work is fundamentally
theoretical, however we have been collaborating in the development of a Rodin
plugin to integrate this theoretical approach with the Rodin platform. This plu-
gin contains a composition tool, and in future will support feature model editing
and an instance generator[4, 5].
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1 Background

Software engineering diagrams can be hard to formally analyse due to inade-
quately defined diagram semantics; often the semantics are underspecified to a
degree that does not allow useful properties to be checked. Whilst the concept
of diagram verification through formalisation has a long history, there has been
little success in linking approaches to software engineering process, and tool
support tends to expose diagrammers to substantial formalism.

The AUtoZ tools provide formalisation in the style of commercially-acceptable
model management [9,8]. AUtoZ is an automated framework based on Amálio’s
GeFoRME, the generative framework for rigorous model-driven engineering [1].
GeFoRME is designed to give semantically-adaptable support to the construc-
tion of formal models from diagrams. The semantics of diagram concepts (classes,
associations, states etc) and the semantics of the domain (what the diagram de-
scribes) are combined through template instantiation, to derive a formal model
that can be analysed using existing tools. Amálio devised the Formal Template
Language (FTL) as the rigorous underpinning to GeFoRME, supporting proof
and metaproof through template representation. A GeFoRME framework com-
prises a catalogue of FTL templates. Selected templates are instantiated using
names of concept instances from diagrams, to generate formal models. Amálio
has shown that, if the original diagrams are consistent, then the generated Z is
type-correct. The templates include conjectures and proofs, and FTL underpins
correctness-by-construction, enabling reasoning at the level of the templates [2].

The selection and instantiation of templates, and the presentation of gener-
ated formal specifications to analysis tools can be largely automated, along with
support for template management [9,8].

2 Automatic formalisation of UML to Z: AUtoZ

AUtoZ (www.jamesrobertwilliams.co.uk/autoz.php) is an automated frame-
work supporting GeFoRME UML+Z transformation. It provides formal con-
sistency analysis, using generated conjectures and proofs, for UML class and
? This research was supported by the EPSRC, through the Large-Scale Complex IT

Systems project, EP/F001096/1

www.jamesrobertwilliams.co.uk/autoz.php
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state diagrams. This means that UML diagrams can be cross-checked, existence
checked, and consistency checked, providing the designer with confidence in the
correctness and consistency of the UML model.

Methods integration is an instance of model transformation [3,6]. This al-
lows the design of AUtoZ to exploit best practice in model-driven engineering
and model engineering tools (Eclipse UML2 and Epsilon – www.eclipse.org/
gmt/epsilon/), and results in a formalisation that is presented to the software
engineer as an optional extension to existing tool-supported model-management
activities.

The AUtoZ framework supports tool specialisations built, for example, for
different graphical modelling or formal analysis tools. As well as formalisation
and analysis, the framework supports expert use, to extend and modify tem-
plate libraries. Two instances of the AUtoZ framework are AUtoCADiZ and
AUtoZ/Eves [9,8].

AUtoZ and call-outs to existing modelling and formal tools are Eclipse plug-
ins. Amálio’s FTL templates are translated into a library of Epsilon Generation
Language (EGL) instances [5]. EGL then operates on the serialised output of a
diagramming tool (any meta-model-based diagramming tool that produces seri-
alised output can be used) to extract concepts and concept names to instantiate
the templates. EGL outputs model details and necessary textual annotations to
populate the templates and construct the formal model [9,8].

3 Customising communication: AUtoCZT

AUtoCADiZ and AUtoZ/Eves generate specifications in LaTeX Z markup. Whilst
CADiZ and Z/Eves are powerful analysis tools, the messages that they produce
are aimed at expert users of Z and the Z tool, not general software engineers.
For instance, messages from the typechecker and theorem provers refer to line
numbers and formal concepts in the Z specification, rather than elements of the
UML models. This is a common issue in tool support for integrated methods [4].

To address the customisation of tool-generated messages, we are creating
an AUtoZ instance that targets the CZT tool suite. The Community Z Tools
(CZT) project (czt.sourceforge.net) is an open-source project providing tool
support for Z. The ZML sub-project of CZT [7] introduces XML markup for Z,
which can be used either as direct input to the CZT tools or to generate LaTeX
markup. CZT tools annotate the ZML file, for instance with issues raised by
formal analysis tools.

To customise error messages, AUtoCZT exploits the fact that, in model engi-
neering, a diagrammatic model must conform to a meta-model (defining abstract
syntax and some semantics). Models that conform to the same meta-model are
comparable, and, where models conform to different meta-models, generic as-
sociation can be made at the meta-model level. Epsilon provides the ModeLink
tool to support such modelling activities (www.eclipse.org/gmt/epsilon/doc/
modelink). Since UML and ZML have metamodels, a generic association can be
constructed, such that elements in the UML and the Z models can be matched

www.eclipse.org/gmt/epsilon/
www.eclipse.org/gmt/epsilon/
czt.sourceforge.net
www.eclipse.org/gmt/epsilon/doc/modelink
www.eclipse.org/gmt/epsilon/doc/modelink
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using ModeLink. Traceability links are now a side-effect of the Z generation.
CZT formal analysis annotations (in ZML) use the links to map to the UML
model.

Figure 1 demonstrates the tool chain of AUtoCZT.

FTL
Template
Catalogue

<ZML />

CZT

<annotated ZML />

generates

generates

annotates

Operation
Operation

Attribute
Attribute

Class Name

Operation
Operation

Attribute
Attribute

Class Name

State State

UML Diagrams
AUtoZ

Fig. 1. The tool chain of AUtoCZT
4 Discussion

GeFoRME and AUtoZ provide frameworks for practical formal analysis of di-
agrammatic models. The genericity inherent in the approaches is applicable
to other transformation approaches. State-of-the-art model management tools
provide the basis for powerful automation. By combining the automation with
CZT’s flexible, open-source formal support mechanisms, a complete tool chain
has been designed which can overcome many of the problems of interfacing for-
mal analysis with traditional diagram-based software engineering.
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Abstract. The B method is one of the most used formal methods, when
reactive systems is under question, due to good support for refinement.
However, obtaining the formal model from requirements is still an open
issue, difficult to be tackle in any notation due the background distance
between the requirement engineer and the one in charge of work with a
formal specification. On the other hand, use cases have become the infor-
mal industry standard for capturing how the end user interacts with the
software by detailing scenario-driven threads. Furthermore, the scenarios
steps provide an easy way to derive functional tests, as in the same way
what has to be achieved and what’s not is, normally, clearly stated. In
this paper we show how controlled use cases and functional tests based on
them can be used as a guideline for writing B operations and invariants.
As a side effect, we also present a practical way to establish traceability
between functional requirements and formal models.
Keywords. B method, requirements traceability, use cases transactions

1 Introduction

B [1] is a formal method that allows us to produce proof obligations that demon-
strate correctness of the design and the refinement. Nevertheless, there is no
standard mechanism for mapping requirements to formal specifications. To over-
come this issue, different solutions have been proposed by researchers. In [2],
the authors have presented a traceability between KAOS requirements and B.
Some authors are investigating the use of the Problem Frames approach [3] as
a possible response. A mixed solution using natural language and UML-B has
been proposed by [4]. However, these approaches use non-standard artifacts for
requirement specifications, which we consider a disencentive for convincing de-
signers to adopt formal methods since they must spend time to learn them.

Use cases [5] can be considered as the de-facto industry standard for re-
quirement specifications. They provide a good way to capture how the end user
interacts with the system by detailing scenario-driven threads. A typical use
case describes a user-valued transaction in a sequence of steps expressed in a
natural language, which makes use cases readable for most end-users. In [6] the
author has presented an approach for building B specifications from use-case
models. This approach is similar to ours, but his project has focused on bringing
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the object-oriented paradigm (including UML diagrams) to formal methods. His
method also maps each use case as a unique B operation, what we believe is not
correct since each use case can have many transactions according to Jacobson[7].

Another relevant point about uses cases is the possibility to derive test cases.
One of the new proeminent development model is the so-called Test Driven
Development[8], where the input information used to generate the source code
are the test cases, instead of use case scenarios or other traditional requirement
documentation.

In this paper we propose an approach for starting B specifications from use
and test cases. Use cases transaction identification can be used as a guideline for
defining B operations, including the pre- and postconditions. In the same way,
test cases can help on the definition of global invariants and constraints. This
research is part of a bigger project, called BeVelopment [9], partially supported
by DEPLOY project. This project is presented in the section 2.

In the section 3 we explain our approach in more details showing how it works
on an example for booking flights for traditional B and a small (industrial) ex-
ample used to explain our approach for Event B. In the section 4 we introduce a
possible utilization of annotation techniques to facilitate the process. This anno-
tation process can be viewed as a refinement in a informal way, were constraints
and supported information are added to contribute for a better understanding
of the problem, and to help in the formal refinement steps.

Finally, we reserve the last section for further discussions and enumerate
some of the future works.

2 BeVelopment Project

As can be seen in figure 1, the development process is composed by several
phases and each phase composed by several tasks. This model was extracted
from the IEC 61508[10] standard, although it’s similar in several different fields
of application.

Most of the time, when this model is followed, in safety critical applications,
formal methods are used only in a small part of the process. Our objective here
is to spread formal method utilization in almost all the phases in this process,
and ultimately, create a guide of application that could be used by others in
order to introduce this extended methodology.

For that, we intend to use what’s been developed inside DEPLOY workpack-
ages (see figure 1 for details) to create a chain of application.

We expect to be able to integrate what’s been developed in Workpackage 1
and 4 during the system and software specification phase. The effort here will
be in determine a way to specify better requirements to avoid that errors like
ambiguities and inconsistencies move forward to later phases. There are also
other studies we’d like to investigate in this phase like in [11] and [12]

During the software architecture and design we intend to use what’s been de-
veloped in workpackage 2 and 3 along with the decomposition technique that’s
on development, trying with that, in the determined point separate hardware
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part and software part, and from that continue with the next refinements inde-
pendently from each other.

Fig. 1. V model and Workpackages

After code generation phase, that we hope it would be possible to be done
automatically from the refined specification, we intend to use what’s been de-
veloped in workpackage 9, in the sense of helping the tool development group in
create an appropriate plug-in to extract test cases from the formal specification.
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At the end, the whole process is part of a more wide objective that is improve
the dependability of the developed product, which meets the expectation of the
workpackage 8.

2.1 Project details

The main objective of this project is to create a useful methodology to be used
during the development life cycle of safety critical systems. In order to do that,
is a fact that some ingredients are needed, as follow:

1. A development life cycle framework. This framework must define what are
the phases in this life cycle, and what are the inputs and outputs of these
phases. Moreover, it needs to state what are the tasks that need to be per-
formed to ”transform” the inputs in the correspondent outputs of each phase.
There are several frameworks that could be used, like spiral, clean room, XP,
etc.. but, as it is the case of railway domain, the V model would be the one
used in this project.

2. For the ”transformation”, or to perform each task, it’s necessary some tech-
niques (or languages, tools, etc...) that would be used to get the inputs and
generate the expected outputs. As the objective of this project is the appli-
cation of formal methods (in our understating, formal methods are, in fact,
formal languages by the fact of lack of a utilization method, like is stated
in [13]) during the development life cycle, one of the expected results is the
identification of what method and related tools would be suitable. As in
some other previous studies, we have strong feelings that the B method and
its derivatives would suit well in most of the cases in railway domain. But,
where is the case of necessity other formalisms would be applied, and as a
secondary objective in this project we would like to evaluate, compare, and
verify other methods like VDM [14], Z [15], and others.

3. But, to be able to use such techniques, an utilization (or application) method
need to be used in order to guide, or to state the steps that are necessary to
successfully achieve the objectives. In almost all cases, such formal languages
are not followed with this methods, and, as was stated by Jens Bendisposto
and Michael Leuschel, during Dagstuhl Seminar (Refinement Based Meth-
ods for the Construction of Dependable Systems), using the example of the
”Abrial index”, where can be seen that when these formal languages are used
by people that really knows about that quite well, the resulting specification
is easily proved where is not the case when it’s done by people who not follow
a (hidden) method. During this project, as another secondary objective, we
would like to determine a method that would guide these techniques appli-
cation, to help people during the development life cycle to spend their time
in valuable tasks, and not in ”try and error” experiences.

4. Finally, as the methodology itself, is the task to determine the transitions
from one phase to another. It needs to be a guide that state what intermedi-
ate tasks are needed in order to an output of a previous phase could be used
as input of the next one. Moreover, it’s the translation of the used framework
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in words that state how to perform whatever is needed to achieve the end of
the life cycle, and not only the ”what” needs to be done. This is the main
objective of this project, and we hope it could be generic enough that could
be used in other domains, but strong enough to facilitate the adoption of
formal methods in railway domain as a strong methodology that helps the
accomplishment of what is already required by the domain standards.

The work presented in this paper is related to the system analysis and physi-
cal model, presented in 1. At this stage it’s not our aim an automatic translation
(although it’s likely to be a necessity in the near future) from the use cases to
the formal model, instead, we intend to facilitate the manual process.

3 Mapping UC to B

The aim of this approach is to fulfill some intermediate phases in the proposed
development process. Until now, it’s commonly seen the use of formal methods
in the development process, only from the design phase where the requirements
are already well defined, but this is not the case on industrial projects.

Based on that, the method proposed here would be useful to be used during
early phases, to help on both directions:

– to the top, helping the requirements elicitation (what might be combined
with other techniques and methods, like Jackson’s Problem Frames)

– to the bottom, helping the creation of the first abstract formal model, in the
sense that it can support the first definitions.

For mapping use cases to traditional B specifications we propose that use
case scenario sentences must be written using a controlled natural language
(CNL) described according our use case transaction definition, which is based
on Ochodek’s transaction model [16].

Definition 1. A transaction is a shortest sequence of actor’s and system ac-
tions, which starts from the actors request and finishes with the system response.
The system validation and system expletive actions must also occur within the
starting and ending action. The pattern for a transaction written as a sequence
of four steps in a scenario:

n. An actors request action (U).
n+1. A system data validation action (SV).
n+2. A system expletive action (e.g. system state change action) (SE).
n+3. A system response action (SR).

We have also decided to define the grammar using subject-verb-object (SVO)
sentences because they are good at telling the sequence of events. We have
mapped the use case actor as subject, a set of actions predicate synonyms (for
example validate, verify etc. would be grouped together) as verb and the rest of
the sentence as object.
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For the sake of simplicity, we assume that all environmental tasks, like user
interactions, are perfect, i.e., they are executed always in a correct order and in a
correct moment. Further studies will be developed to incorporate non-functional
requirements and exceptions.

Let’s take a look at an example in order to clarify our idea, first about the
generation of controlled use cases, then we introduce the annotation and finally,
the test cases generation. In accordance with previous definitions, suppose we
have the following use case scenario:

1. The agent specifies a travel itinerary for a client.
2. The system validates the itinerary.
3. The system searches a set of appropriate flights.
4. The system presents them to the agent.
5. The agent selects a flight.
6. The system verifies free spaces on the flight.
7. The system reserves any seat from the set of free spaces.
8. The system confirms the reservation.

In the above example, we can see two transactions (1-4 and 5-8) and each one
can be used as a guide to create a B operation. From SV actions (2 and 6) we
extract the preconditions (validates the itinerary, verifies free spaces) and from
SE actions (3 and 7) we derive the operations names (search, reserve) and the
postconditions (searches a set of flights, reserves any seat). A possible mapping
to B specifications, which is self-explanatory, is shown below.

flights ← search(city1,city2) ,
PRE city1 ∈ CITY ∧ city2 ∈ CITY ∧ city2 ∈ itinerary(city1) (2)
THEN flights := companies({city1 7→ city2}) (3)
END;

reserve(flight) ,
PRE card(flight) > 0 (6)
THEN ANY seat WHERE seat ∈ flight (7)

THEN flight := flight - {seat}
END

END

For mapping use cases to Event B specifications we must include one more
step in the previous definition.

Definition 2. A transaction is a shortest sequence of actor’s and system ac-
tions, which starts from the actors request and finishes with the system response.
The system guard recognition, validation and expletive actions must also occur
within the starting and ending action. The pattern for a transaction written as
a sequence of four steps in a scenario:
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n. An actors request action (U).
n+1. A system guard recognition action (SG)
n+2. A system data validation action (SV).
n+3. A system expletive action (e.g. system state change action) (SE).
n+4. A system response action (SR).

Another example, to explore the abstraction of the first model for Event B,
can be seen bellow. This is an example based on a train door system, where, when
a open command is received by the system, if the conditions are satisfied, the
train door must open. This is an attempt to use this approach at an abstraction
level, but it seems to be strong enough to present the general information of the
system.3

1. The agent requests to open the doors on one side of the train.
2. The system recognise the request.
3. The system verify the validity of this request.
4. The system commands the opening.
5. The system confirms the execution.

We can use SG, SV and SE actions as a guide to derive guards, conditions and
actions. A possible mapping for an Event B model was created from this use case:

OPEN COMMAND ,
WHEN grd1: REQUEST = TRUE (2)
WITH cond: CONDITIONS = TRUE (3)
THEN act1: OPEN := TRUE (4)
END

END

At this point we just present superficial information, complete enough to
understand the global functionality of the system. Again, at this point there is
no need to present:

– how the system recognize the request;
– how it must to be validate;
– how the command is generated.

These suppressed information help to understand the main goal of the system,
and there is no need to express the internal behavior of the controller itself. In
the next section we present a possible approach to introduce such information.

4 Informal UC Refinement

The second step(under development), in order to generate a full B specification,
is the generation of test cases, based on use cases specification.
3 as this is highly an abstract representation of the (one function of) the system, a lot

of manual work has to be performed, like variable names, etc...
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As stated before, we also intend to use test cases to help on the development
of formal specification, but before that, some test cases classification is needed
to help on understanding the proposition.

One possible classification of tests are:

– test to succeed - these are tests that can validate that the system is per-
forming it’s actions accordly with what was specified for the system to do,
meaning that, based on the correct inputs, the system must provide the
correct output.

– test to fail - these are tests that are used to verify the behavior of the system
when inputs are provided in a different sequence, order, or value. It’s used
to check if in those cases the system has the correct protection to avoid
misunderstandings or dagerous behaviors.

Based on this classification, it’s not difficult to see that the generation of
the first one is almost a straightforward categorization of the use cases, but the
second one is not trivial.

To help the creation of the second family of test cases, we propose an anno-
tation technique that must be applied to the use cases in order to facilitate the
definition of bounderies, types, and any other information that could determine
possible exceptions.

as stated before, from one single use case, it’s possible to derive several test
cases, divided in test to succeed, and test to fail. to help this generation, we
propose a simple, informal annotation system that needs to be included in the use
case specification, do drive the user to determine what test cases are necessary.
Basically, this annotation system cover the following properties:

– Boundaries
– Possible values
– Safety properties (like, not allowed sequences, wrong events, etc...)

An example for this annotation (based on the first example) can be seen
bellow:

1. The agent specifies a travel itinerary for a client.
[AN1:-> the source and destination must exists.
AN2:-> the valid characters are only alphabetical]
2. The system validates the itinerary.

The generation of the test case related to test to succeed are straightforward,
so it will not be cover here, but to generate the test cases related to test to fail,
the included information (the developer/client wishes), can help a lot.

One example of test to fail based on this annotaded use case can be:

1. The agent specifies, as a travel itinerary, the follow data:
Paris12.
2. The system verify the validity of this itinerary.
3. The system return the related error message.
(as the property, in the annotation part, do not hold)
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More formally, the refinement process is based on the horizontal refinement
techniques [17], where new information is introduced in each step. Of course,
these refinements can not be proved as correct in the Use Cases phase, but it
will be verified during the formal development. Moreover, it’s a complimentary
tasks that needs to be reviewed in case of failures during the verification.

Based on the second example, we can have the first refinement, based on
annotations, like the one presented bellow:

1. The agent requests to open the doors on one side of the train.
[AN1 - this operation is made by selection
the side and pressing the correspondent bottom]
2. The system recognise the request.
[AN2 - this operation is only allowed if the train
is stopped in the correct position(at the station)]
3. The system verify the validity of this request.
[AN3 - all the conditions must be true at the same time]
4. The system command the opening.
[AN4 - at least 2 different signals must be
activated to guarantee the safety condition]

From this example, we can see that’s possible derive several test cases. Some
examples are presented bellow. Again, first we present the test to succeed, and
after some possibilities of test to fail. One test to succeed would be:

1. The agent select the right side for opening
and press the right open bottom.

2. The system verify the sequence and the consistency,
i.e., if the side and bottom are related,
and if the speed is 0km/k

3. The system activate both output signals

This procedures can be done in two different flavors. In one side we can work
on both, informal (use and test cases) and formal model at the same time, I mean,
at the moment that one refinement is made in the informal model, it must be
reflected in the formal one. This approach helps the mistakes discovery during
the early development phases, although it brakes the reasoning flow during the
construction of informal model. On the other hand, we can refine completely the
informal model, and after generate the formal one. As it can help the reasoning
flow, it can be a problem if errors are discovered later in the process. Based on
these information, a weighting must be performed to determine when and how
go to formal model and come back.

The last step, the generation of global invariants and constraints is still under
study and it’s supposed to be presented in a future revision of this work.

5 Discussions and Future Work

In this paper we have proposed an approach for mapping requirements to B
(Event B) models through use and test cases in a pragmatic way. We are not
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interested (at this moment) in the automatic translation of use cases for formal
specifications since there are many natural language ambiguity problems. The
intention is to take the use cases as a guideline for starting B specifications.

Our main goal is to create a new and complete development process (includ-
ing deliverables artifacts), namely BeVelopment, for B focusing on agility/usability
and we believe that use cases seem to be a good start point.

Other approaches are under study right now like Problem frames and KAOS.
The intention is to facilitate as much as we can the beginning of the development
process where formal methods are supposed to be used.

The project is in the initial phase and there are a lot of future works. First,
we are planning to use the Rodin platform as tool support. Another possible
improvement would be a more flexible grammar since there are B operations
without preconditions. Alternative scenarios (extensions) must also be included
in the transaction discovery process. At the moment, our approach only maps
B operations (events for Event B) and we are investigating other artifacts for
extracting the B machine name, constants, properties, assertions, variables, ini-
tializations and invariants as well as non-functional requirements, including per-
formance and reliability.
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1 Motivation

The Rodin platform [3] provides the practical setting to carry out modelling in
Event-B. It seamlessly integrates modelling and proving, and provides an exten-
sible and configurable mechanism that can be adapted to different application
domains and development methods [1]. The Rodin platform provides a prov-
ing infrastructure that has certain limitations. Extending the prover with proof
rules (rewrite and inference rules) requires a certain level of competence using
the Java programming language as well as good knowledge of the toolset’s in-
ternal architecture. A further complication of this approach is that it became
non-trivial to verify the soundness of the prover after adding new rules. This pa-
per presents our approach when dealing with prover extensibility and soundness
in the context of Event-B.

2 The Theory Construct

Theories will provide a mechanism by which the user can extend the proof ca-
pabilities of the Rodin platform by specifying rewrite rules. Proof obligations
will be generated to verify the soundness of the prover augmented with the new
rules. In essence, the theory construct will allow a degree of meta-reasoning to
be carried out within the same platform in a similar fashion to Event-B reason-
ing. Figure 1 outlines the structure of the theory construct. In what follows, we
briefly describe each of the elements of the theory construct:

1. Sets. A theory can define a number of given sets on which it is parametrised.
2. Metavariables. A theory can define a number of metavariables each of which

has a type.
3. Rewrite Rules. Rewrite rules are one-directional equations that can be used

to rewrite formulas to equivalent forms. As part of specifying a rewrite rule,
the theory developer decides whether the rule can be applied automatically
without user intervention or interactively following a user request.

3 Rewrite Rules

A rewrite rule defines how a formula lhs may be rewritten to one of several for-
mulae rhsi provided condition Ci holds. The following two definitions formalise
the concept of rewrite rules within theories. Note the use of the well-definedness
operator D [2].
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Theory theory name

Sets s1, s2, ...

Metavariables v1, v2, ...

Rewrite Rules r1, r2, ...

End

Fig. 1. The Theory Construct

Definition 1 (Rewrite Rule). A rewrite rule is of the form

lhs→ C1 : rhsi

...

Cn : rhsn

where:

1. n ≥ 1,
2. lhs is not a meta-variable but may contain metavariables,
3. lhs and rhsi (for all i such that 1 ≤ i ≤ n) are formulas of the same syntactic

class i.e., both expressions or both predicates,
4. Ci (for all i such that 1 ≤ i ≤ n) are predicates,
5. Ci and rhsi (for all i such that 1 ≤ i ≤ n) only contain free variables from

lhs,
6. lhs and rhsi (for all i such that 1 ≤ i ≤ n) have the same type if lhs is an

expression.

Note. In this paper, we only consider rewrite rules whose left hand side is a basic
predicate (e.g., ⊆) or is an expression not involving binding. More generally, we
do not consider rules that require side conditions (i.e., non-freeness conditions).

Definition 2 (Sound Rewrite Rule). A rewrite rule

lhs→ C1 : rhsi

...

Cn : rhsn

is said to be sound if the following sequents are valid:

1. H,D(lhs) ` D(Ci) for all i such that 1 ≤ i ≤ n,
2. H,D(lhs), Ci ` D(rhsi) for all i such that 1 ≤ i ≤ n,
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3. (a) H,D(lhs), Ci ` lhs = rhsi for all i such that 1 ≤ i ≤ n if lhs is an
expression, or;

(b) H,D(lhs), Ci ` lhs⇔ rhsi for all i such that 1 ≤ i ≤ n if lhs is a
predicate,

where H is a predicate providing typing information for all free variables occur-
ring in lhs.

The previous definition ensures that rewrite rules are both validity-preserving
and WD-preserving.

4 The Theory Prototype Plug-in

A theory prototype plug-in has been developed as an extension to the Rodin
platform. The plug-in offers the following capabilities:

1. Users can develop and validate theories in the same way as contexts and
machines.

2. Users can deploy theories to a specific directory where they become available
to the interactive and automatic provers of Rodin.

3. Users can use rewrite rules defined within the deployed theories as a part
of the proving activity. A pattern matching mechanism is implemented to
calculate applicable rewrite rules to any given sequent.

5 Further Work

This work can be extended to enable the specification and validation of inference
rules within theories. It can also be extended by providing a clear set of guide-
lines to help the theory developer with deciding whether a rule can be applied
automatically. Finally, the verification of the pattern matching mechanism will
give more confidence in this approach.
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Abstract. In this paper we give feedback about the B specification
of a localization component. We discuss the benefit of using a KAOS
modeling to obtain the architecture of the B specifications.

1 Context

A localization system is a critical part of a land transportation system. Many
positioning systems have been proposed over the last years. GPS, one of the
most widely used positioning system, is perhaps the best-known. This system
belongs to the GNSS (Global Navigation Satellite Systems) family which also
regroups GALILEO or GLONASS.

Positioning systems are often dedicated to a particular environment; the
GNSS technology, for example, generally does not work indoors. To resolve
these problems, numerous alternatives relying on very different technologies have
arisen. Those last years, Wireless LAN such as IEEE 802.11 networks have been
considered by numerous location systems. These systems all use the radio signal
strength to determine the physical location.

Localization systems can therefore be designed using various technologies like
wireless personal networks such as Wifi or Bluetooth [3, 4], sensors [5], GNSS
repeaters or visual landmarks. The aim of this paper is to give some feedback on
an ongoing work on the specification of a localization software component that
used GPS, Wifi and sensors technologies. We will just focus on the architecture
of the specifications and how a KAOS model help us to build it.

The remainder of the paper is organized as follows. Section 2 overviews the
first B specification that we have developed and what are the problems we have
encountered. Section 3 presents the KAOS methodology and the goal model
that we propose for the localization component. Then, Section 4 explains how
we derive a new B architecture specification. Finally, Section 5 discusses the
benefits of such approach and presents the future works.
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2 The first B specification

Once we have defined the different properties which we want to consider in the
specification, we began to develop the B specifications [1]. Figure 1 presents the
first and simple architecture that we have obtained. The main difficulty when
we develop a localization component is to find the correct algorithm that merges
positioning data. We planned to refine the Location machine to be more and
more precise in the manner to do that. The main problem was to take into
account all the properties we have to deal with. At this stage, we think that a
semi formal model will be very useful in order to have guidelines on how to do.

Fig. 1. The first architecture of the B machines

3 The KAOS model

KAOS (Knowledge Acquisition in autOmated Specification) [2] is a goal-based
requirements engineering method. KAOS requires the building of a data model
in UML-like notation. The particularity of KAOS is that it is able to implement
goal-based reasoning. A goal defines an objective the system should meet, usually
through the cooperation of multiple agents such as devices or humans. KAOS is
composed of several sub-models related through inter-model consistency rules.
The central model is the goal model which describes the goals of the system and
its environment.

In this paper, we have modeled a localization component based on several
basic and off-the-shelf technologies : GPS, WIFI and sensors. This localization
system will be used in a model of an autonomous vehicle : a CyCab. Figure 2
shows a KAOS goal model of the localization component. Each Goal is described
informally in natural language.
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Fig. 2. KAOS goal model of a localization component

4 From KAOS to B

We did not have enough space to describe how we transform the KAOS model
into B specifications, the interested reader can refer to [6] for more details.

The main idea is to specify a correspondence rule between each concept of
the goal model and B elements. Up to now, we consider only functional goals of
type Achieve [2]. A B machine is associated to each goal. This machine contains
an operation that “realizes” the goal; i.e. it describes the ”work” to perform to
reach the goal, in terms of generalized substitutions. The refinement of a goal
is represented by a B refinement machine that refines the machine; the abstract
operation is refined by a concrete one. This operation is built by combining
operations of the machines that correspond to the sub-goals of the more abstract
goal and are included in the B machine via the inclusion relationship. The nature
of the combination depends on the goal refinement pattern (Milestone, AND,
OR).

Figure 3 shows the structure of the different B machines. The obtained ar-
chitecture allows us to easily establish traceability links between KAOS goals
and the B operations that realizes these goals.

5 Conclusion and future works

The specification of a localization component brings us to use the KAOS goal-
based requirements engineering method. Since goals play an important role in
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Fig. 3. The architecture of the B machines

requirements engineering process, the proposed mapping comes down to ensure
traceability between KAOS goal models and B machines. As a consequence,
rather than establishing traceability from the KAOS requirements model as a
whole, we propose to establish traceability from individual goals that are part
of the KAOS goal model. The main contribution of our approach is that it
establishes the first brick toward the construction of the bridge between the
non-formal and the formal worlds as narrow and concise as possible. This brick
balances the trade-off between complexity of rigid formality (B method) and
expressiveness of semi-formal approaches (KAOS). Furthermore, by discharging
the proof obligations generated by the B refinement process, we can prove some
properties of consistency on the goal model. The current work is still partial
and we are actively working on its extensions. Regarding the different KAOS
goal model concepts, we need now to consider the translation of the concepts of
domain properties and non functional goals. We plan also applying the approach
on a number of case studies. At tool level, we plan to develop a connector that
establish a partial automated traceability between KAOS goal models and B
specifications.
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