See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342361570
The Atelier B Proof System and Its Improvements

Presentation - November 2018

DOI: 10.13140/RG.2.2.35928.52480

CITATIONS READS
0 52
1 author:

Thierry Lecomte
ClearSy System Engineering
54 PUBLICATIONS 418 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project LCHIP: Low Cost, High Integrity Platform View project

Project AMASS - Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems View project

All content following this page was uploaded by Thierry Lecomte on 22 June 2020.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/342361570_The_Atelier_B_Proof_System_and_Its_Improvements?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/342361570_The_Atelier_B_Proof_System_and_Its_Improvements?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LCHIP-Low-Cost-High-Integrity-Platform?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AMASS-Architecture-driven-Multi-concern-and-Seamless-Assurance-and-Certification-of-Cyber-Physical-Systems-4?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ClearSy_System_Engineering?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The Atelier B Proof System
and Its Improvements

i ;"‘ Salvador , November 26t 2018
; . Thierry Lecomte 4 |
| ' ' R&D Director, ClearSy

thierry.lecomte@clearsy.com c L E A R S Y

SYSTEMS ENGINEERING

The Atelier B Proof System
and Its Improvements

Intro to B method
CLEL -Brlyee™aT)" At/ N o
" Proof System bl). e

Improvements

-—»-:-_
=

The Atelier B Proof System
and Its Improvements

Intro to B method

3 -
S

Intro to B method

ks

Intro to B method

b
g
&

B M ET H O D http://www.methode-b.com/

Invented by French mathematician (J. R. Abrial)
Assigning programs to meanings

Top-down approach

Programs are proved to comply with their specification

sBuiueaw o} sweiboid BujuBissy

-
-
o
i
(0]
o
@)
x

ATELIER B e tellorb.eu/ V4.5 B;3
for the tutorial

Implement B Method

First autonomous metro Paris L14 Meteor (1998)
30% of automatic metro worldwide

Maintained & developed by CLEARSY

" NJ NEW YORK
TORONTO

N MEXICO
- "B~ pANAMA
W 1] SAN JUAN
- o
W57

CARACAS
SANTIAGO
' SAO PAULO

AMSTERDAM

BARCELONA

LAUSANNE
LISBON
LYON
MADRID &

%

BOLOGNA
BUDAPEST

MALAGA %
MILANO
PARIS

SNCF Network
STOCKHOLM

LUSAIL
RIYAD

DELHI
LAHORE

BANGALORE%

!

‘7\.

BEIJING
CHANGCHUN
DAEGU
GANGZHOU
HONG-KONG
INCHEON
KUNMING
LANZHOU
NANJING
NINGBO
QUINGDAO

¢

SEOUL
SHANGHAI
SHENYANG
SHENZHEN
SINGAPOUR
SUZHOU
TAICHUNG
WUHAN
WUXI
XIAMEN
XI'AN
ZHENGZHOU

Intro to B method

| « Only inactive sequences can be added to the active
sequences execution queue. »

Behaviour
+
activation_segquence = /* Activation d'une séguence non active */ o
PRE - (sequences = seq‘uences_actives} THEN propert|e5
ANY segu WHERE
sequ € seguences - seguences_actives
THEN
sequences_actives := seguences actives U {seqgu}
END .
END; Behaviour
l +
. .) : properties
activation sequence = /* Activation d'une séguence non active */
VAR sequ IN
seqgu <-—- indexSeguencelnactive;
activeSeguence (sequ)
END;

v

wold MO_ activation segquence (vold)
{
CTX__ SEQUENCES s=equ;

sequence manager indexSequencelnactive (&sequ):
sequence manager_activeSegquence (2equ);

FFFF BB4C 2440 BSC5 BDTD OCEE 4110 BSCE
BE3Ce O0CEBD 1465 0000 0000 BD4Z 0BB3 FBOT

T6l1l7 F7CT 0400 0000 740F BB41 0OCBD 7D10
BE3Ce 04EB% 4500 BD4Z 04FC BSC1l C1ES 0ZF3

0x01FS70
O0x01FSB0
0x01FS50
Ox01FSA0

CLEARSY

SYSTEMS ENGINEERING

« Only inactive sequences can be added to the active Natural language
sequences execution queue. » requirement

activation_segquence = /* Activation d'une séguence non active */
PRE - (seqguences = seguences_actives) THEN

ANY sequ ZHERE . Proof (coherence)
sequ sequences - segquences_actives HH H
THEN B SpeC|f|cat|on

sequences_actives := seguences actives U {seqgu}
END
END;

Proof (refinement)

activation sequence = /* Activation d'une séguence non active */

VAR sequ IN
sequ <-- indexSequencelnactive; B Implementation
activeSeguence (sequ)

Proof (coherence)
END;

wold MO_ activation segquence (vold)

CTX__SEQUENCES sequ;

sequence manager indexSequencelnactive (&sequ): C generated COde Cyclic software

sequence manager_activeSegquence (2equ);
-
single-thread

0x01FS70 | FFFF BB4C 2440 B3C5 BDTD OCEE 4110 BSCE .
Ox01FSBO0O | B3C6 O0CBD 1465 0000 0000 BD4Z 0BB3 FBOT7 ‘ ‘
Ox01FS380 | 7617 F7C7 0400 0000 740F BB41 0OCBD 7D10
O0x01FSA0 | 8306 04B% 4500 BD4Z2 04FC BSC1l C1ES 0ZF3

Binary code

CLEARSY

SYSTEMS ENGINEERING

FORMAL METHODS

B M ET H O D http://www.methode-b.com/

= Model is formal

Model is text-based

Same mathematical language (B) used for specification model and
implementation model

Uses set-theory (A < B) and predicates logic (P = Q)
Static aspect: properties
Dynamic aspect: behavior

FORMAL METHODS

B M ET H O D http://www.methode-b.com/

= |Formal] : it relies on a mathematical model of the software, containing
both what the software is expected to do and its algorithm

= The model is mathematically [proved]

The algorithm doesn’t contradict its specification
tabe 0.9 5 N
sort=tab € (tabe 0..9 -5 N A Vx.(xe 0..8 = tab(i) >= tab(i+1)))
implementation could be a bubble sort, a quick sort, etc.

= Loops terminate
Decreasing positive VARIANT,

4 MO.mch* - Atelier B

Fichier Edition Affichage Rechercher Aide

O 200 0O

OPs 3 a ligne @ X MO.mch*

®xx: INTEGER
INITIALISATION

XX = 0
OPERATIONS

inc =

@.

CLEARSY

SYSTEMS ENGINEERING

Intro to B method

I £ M0.mch - Atclier B

Fichicr Edition Alfichage Rechercher Aide

AR X00 00

PI“OOf POs on line 10 of MO & X| Mo.mch
obligations | e 1 MACHINE
list 2 MO
B VARIABLES
4 XX
5 INVARIANT
2 xx: INTEGER[
~ | INTTIALISATION Parts of the model
| P related to the proof
10 |1;’l B inc = Xx := xx+l
- END
Number of proof obligations related to the line
rer—rrer—n + color (green: OK, red: NOK)
Proof @
obligation

CLEARSY

EEEEEEEEEEEEEEEEEE

Intro to B method

INE = specification IMPLEMENTATION = algorithm

MO.mch MO_i.imp™®

MACHINE IMPLEMENTATION MO i
MO REFINES MO [fI Implement its specification
VARIABLES
XX coNcRETE_VARIABLES I [Implemented variable
INVARIANT 1/2 XX
2/2 x¥%: INTEGER INVARIANT
INITIALISATION 1/2 xx: INT B[Implementable type
1/1 XX 1= 0 INITIALISATION
OPERATIONS 1/1 XX 1= 0
1/1 inc =
OPERATIONS
END 0/1 inc =
END

@

CLEARSY

SYSTEMS ENGINEERING

Intro to B method

MO.mch

Ma_i.imp

IMPLEMENTATION MO 1
REFINES MO

POs on line 12 of MO_j

finc.1

CDHCRETE_?ERIABLES
XX
INVARIANT
¥x: INT
INITIALISATION
®x = 0

OPERATIONS
inc = xx := xx + 1 -] Endless increment

If we increment enough , we get out of type INT @
CLEARSY

SYSTEMS ENGINEERING

Intro to B method

POs on line 12 of MO_j

inc.1
inc.2

inc.3

M0.mch

MO_i.imp

IMPLEMENTATION MO 1
REFINES MO

CONCRETE VARIABLES
XX

INVARIANT
¥x: INT
INITIALISATION
XX = 0
OPERATIONS
inc = IF xx = MAXINT THEN xx := 0 ELSE xx := xx + 1 END
END
If we get to the upper bound (MAXINT)
then we reset else we increment
If we get to the upper bound then the value should be 0 @

CLEARSY

SYSTEMS ENGINEERING

Intro to B method

M0.mch

x¥: INTEGER
INITIALISATION

X¥x = 0
QOPERATIONS

inc = CHOICE xx := 0 OR xx := xx + 1 ENDl-] Either we increment or we reset

MO.mch MO _i.imp

IMPLEMENTATION MO 1
REFINES MO

The 2 models
are compatible

¥¥: INT
INITIALISATION
¥ = 0

OPERATIONS

inc = IF xx = MAXINT THEN xx:=0 ELSE xx := %X +1 END
END Y

Srarema cvaineest NG

Intro to B method

Model management
B o

COMPONENT
FORMAL MODEL

Code Generation

SOURCE
CODE

PROOF OBLIGATIONS

Model Proof @

DEMONSTRATIONS CLEARSY

EEEEEEEEEEEEEEEEEE

Intro to B method

levelopment e

COMPONENT
FORMAL MODEL

PROOF OBLIGATIONS

@

DEMONSTRATIONS CLEARSY

EEEEEEEEEEEEEEEEEE

Intro to B method

* A B project is made of components (models)

Models can be:
* Refined
e Decomposed
* Seen

COMPONENT

FORMAL MODEL

PROOE OBLIGATIONS

DEMONSTRATIONS

CLEARSY

SYSTEMS ENGINEERING

Intro to B method

g vlc;pment Cycle

root
. ||"'I‘ i
T
| | |
Decomposition |
h n !)
garap Modern Automatic Train Protection
Software (2015)
FORMAL MODEL
CONTROL Metrics
@ TYPE

l

@ GENERATE
PROOF OBLIGATION

PROOE OBLIGATIONS

@ PROVE @ROVE INTERACTIVELY

AUTOMATICALLY
DEMONSTRATIONS

— 233 machines, 50 kloc

— 46 refinements, 6 kloc

— 213 implementations, 45 kloc

— 3000 definitions

— 23000 proof obligations (83 % automatic proof)

&

CLEARSY

EEEEEEEEEEEEEEEEEE

— 3000 added user rules (85 % automatic proof)

Intro to B method

elopment Cycle

COMPONENT
FORMAL MODEL

PROOE OBLIGATIONS

@ PROVE
AUTOMATICALLY

@ROVE INTERACTIVELY

DEMONSTRATIONS

Proof Obligations [POs] linked Dynamic aspect

to model clauses f \

Static aspect | mAusaToN
A

o€ referenced by Proof obligations
static properties

are consistent

CLEARSY

SYSTEMS ENGINEERING

Intro to B method

g vlc;pment Cycle

COMPONENT
FORMAL MODEL

CONTROL

@ TYPE

PROOE OBLIGATIONS

@ PROVE @ROVE INTERACTIVELY

AUTOMATICALLY
DEMONSTRATIONS

Proof Obligations [POs] linked
to model clauses

£ Properties for project T1
POs fully, automatically

project software development krt resource file

generated

* Functional

* Well-definedness
e Overflow (option)

Type Checker

[] Enable extended SEES

Proof Obligation Generator

Generator : || Legacy (<4.2)

[+] New Generation
2 PO generators

e <4.2 (Legacy)
* New Generation (default) [] Generate Well Definedness Proof Obligations
reqUired for PO [] Generate Why3 Proof Cbligations

traceability %

CLEARSY

SYSTEMS ENGINEERING

[] Generate Overflow Proof Obligations
POG MG

Intro to B method

* POs generated per component
* Lower impact of model modifications

* Limitation: 3 000 POs per component
* Good practice (frequent modifications)

Soe * General form
Global hypotheses => (Local hypotheses => Goal)

CONTROL

‘ [| Potentially 100x (1000x) (10000x) global hypotheses

@ GENERATE
PROOF OBLIGATION

Most hypotheses do not help to prove
PROOF OBLIGATIONS
* POs merged when refactoring models

@ PROVE @ROVE INTERACTIVELY
AUTOMATICALLY
CLEARSY

EEEEEEEEEEEEEEEEEE

Intro to B method

* Atelier B main prover
e Also used by the Rodin platform (Event-B
= Development Cycle ¢ P ()
* |Initial industry-ready specification
* Able to support full automatic train protection software
proof
* 10 seconds per PO mean time
* Optimized PO loading per clause (design)
Ex: when moving from one operation to another, global
hypotheses are kept in memory

!
~ CONTROL
©® nee
7 | * ForcesfromOto3
W SENERATE * 1to 3 are likely to enter infinite loops
|
* Proved POs are supposed true
OR— l & FtVE ALY * Unproved POs have to be investigated

AUTOMATICALLY

* Proved PO % as a quality indicator

l

EEEEEEEEEEEEEEEEEE

Intro to B method

The project graphical view displays the automatic proof status of the project
Green: fully proved — red: not proved at all

[veond_burksge | [werd dotmss mormws | | dea verd_rabmse
i o i cas rra: g v ik

1 v _ridsead

I8
e werd_ALLIL |

[v i vt s | [ey i sm |

P iyt s] Py it AL g

Visual inspection may then be performed on yellow, orange and red components

CLEARSY

EEEEEEEEEEEEEEEEEE

Intro to B method

* Interactive prover
* Proof commands
e (Call to automatic prover (force 0 to 3)

* Addition of mathematical rules

COMPONENT
FORMAL MODEL

CONTROL
@'WPE

l

GENERATE

PROOE OBLIGATIONS

@

DEMONSTRATIONS CLEARSY

SYSTEMS ENGINEERING

Intro to B method

pmn C&cle

* Successful proof scripts are saved
* Proof replay to obtain 100% proved projects
* Avoid to lose demonstration when refactoring the models

* Definition of generic proof scripts (tactics)

COMPONENT
FORMAL MODEL

CONTROL
(& Tre
@ GENERATE
PROOF OBLIGATION

PROOE OBLIGATIONS

CLEARSY,
SYSTEMS ENGINEERING

Intro to B method

g vlc;pment Cycle

* Industrial needs
* Higher level of proof automation
e Quick interactions with the designer
* Objective: 100% proof for a project (automatic + interactive)
* Everything demonstrated (models, added rules)

e Certification needs

* Ability to replay proof process
* Tools certification not mandatory (only the process is evaluated) [Railways]

&

CLEARSY

EEEEEEEEEEEEEEEEEE

The Atelier B Proof Sysém
and Its Improvements

B Intro to B method

Proof System

Improvements

-

Proof System

» Atelier B full 4.5.0-beta.13 » bbin * win32 »

& Maom

| plugins
[Arith.kin
| | Arith16.kin
| Arith32.kin

LS

43 AtelierB.exe

#

[l adtuss i

£ Atelier B
Atelier B Affichage Espace

Mouveau L4

de travail Projet

OO

Importer r

B X

Cuitter Ctrl+C

=2 |ocal

£ Préférences

Fenétre principale Projets Mouveaux composants Editeur interne Apparence de I'éditeur interne Installation Couleurs
Yue des composants
[+] afficher I'“tat de chague composant (peut &tre lent sur de gros projets)
[] Associer des actions différentes selon les colonnes
Editeur
Encodage par défaut UTF-8 -
(®) Utiliser I'editeur de ['Atelier B
(") Utiliser un &diteur externe
Exécutable de I'éditeur externe xemacs
Prouveur interactif
[+] calculer les informations de navigation
Langage
Interface language (program restart needed) : | System (fr_FR) w
Sistem iﬁ FF‘.i I

French (fr_FR)
Portuguese (pt_BR)
Japanese {ja_JP_'}

Quit Atelier B then restart:

the interface is now is English

|]

Proof System

itial Ul in English

£ At =1 X
Co m m a n d s Atclier B View Workspace Project Component Help]
OO0V O DV L ExOROO O
Fal ’
Gaaasalnss | e
focel \ Co?ﬂent TypeChecked POs Generated Proof Obligations Proved ~ Unproved <

Projects Components

[Hide Finished tasks o] [3)

Tasks Error messages

f
.
.

uuuuuuu

Proof System

£ Atelier 8 - X
Atelier B View Workspace Project Component Help

VOO VVOLExOROL OO

| Workspaces 7 x|

o= | BlaaaaaR]sn | oe
© focal Component TypeChecked ~ POs Genersted Proof Obligations Proved Unproved
Check « Hide finished tasks » —
. . . . < >
to avoid finished tasks cluttering -
- [Hide Finished tacks] oﬂoxné_ngsﬁmmﬁllwmm DMﬁﬁEme:ag:s

Proof System

ak 2

Select

H | Workspaces 5
« Atelier B / preferences » vanwindow | Projects | New companentsl | Intemalitor | |15 S

Wu—:s
/ Tab width |4

Select - Indentation count |4

« lnternal Editor » [+] Activate indentation

£ Preferences

Code verification

[+] Perform semantic analysis of components

CheCk a" items of [] Perform BO Check on software components
« PrOOf information » \ ﬁcfir‘lﬁm’maﬁoﬂ {new POG is required) \

d . I d [+] Display proof information in the editor
tO get € ItOI‘ colore [+] Generate POs when opening a file

W|th prOOf status [+] Generate POs after file saving

[Tasks E Force BXML generation when generating POs a x

i () [] Multi-Line messages

@ Launch Force 0 after PO generation in the editor J Component

Project Compenent Action

Spell-Checking
[+] Spell-ched: comments

Default Language |fr_FR

Proof System

= Create a B Project

£ Atelier B * Enter a name

&' B View Workspace Project Component Help / Ex: "ETMF_2018”
@99 HDOVOLExOO0 OO0

T""‘S"m ’ T | Dot - / « Select “Software
. Classical view v 7%
Click on the — / - Development”
W =8 |oca -~
o“,n Component TypeChecked POs Generated Proof Obligations pfoved Unproved BO
Yellow “+ s Jw ok o ’ /) _
> P ChainBreak @ Mo 2K ok ! L 0 : o CIiCk on "NEXt"
v (& ETMF_2018 (OK|OK]|31]2|93%) ? >
> &) Components
> k2 Definitions 4 Mew project . .
O Librares * On first execution, you are
> @ source WD lermmas o o
> @ LCHP.B (”a"‘e and config asked to define the project
> BT Workspace |kx3| v| .
> ® TesT Project Name [ETMF_2013 | dlreCtory -)
Project type Select any directory with
E— R/W access
. J
. 3 [] create from a Manifest
< a Erraors (0)] dx Warnings {0) o CIiCk on llFiniSh” @
Message
—— CLEARSY

SYSTEMS ENGINEERING

Proof System

" = Add a Component and Prove it

B Atelier B — O * | = | models _ C
Atelier B View Workspace Project Component Help Accusil Partage Affichage
1 o ’
hj e @ 9 9 w ‘3 @ X @ @ @ @ @ @ « v <« OMN_GOING » 013 Tuto Preuve ETMF » ressources » models v O Rechercher dans : models
Norks 8 x "
orkspaces | Nom Medifié le
e #F Accés rapide
| | | cassicl view v IEB[| Cear | e . Bladdrypmen 24/02/2015 16:16
ureau
v @ local E Ambigumch 24/02/2015 16:16
> @ B6256 Compaone TypelChecked POs Generated Proof Obligations Proved Unproved B0 Checked * Teléchargements + . Assert.mch 24/02/2015 16:16
> BE270 o crx oK oK 0 0 0 - Documents A Assert O.ref 24/02/2015 16:16
A
> BInErean g Mo oK OK ! ! 0 - =) Images # [Assert 1t 24/02/2015 16:16
~ |8 ETMF_2018 (OK|OK|21[2]93%) Resqfirces OK I il N - 010 Présentation N7 B 2ssertions.mch 247022015 16:16
) ; — - 013 Tuto Preuve ETMF B 2ssertionsd.mch 24/02/2015 16:16
mition El pozero.meh 24/02/2015 16:16
(L) Libraries Chauffage
. ® . o E eql.mch 24/02/2015 16:16
source ENgMmas
> P LCHIP B Y . GopSimpl.mch 24/02/2015 1616
s ®T E Manual.mch 24/02/2015 16:16
MiniPr.mch 24/02/2015 16:16
> @ TEST @ cepC a
= Bl Resources.mch 19/11/2018 23:24
B Bureau B Resourcest.mch 24/02/2015 16:16
Documents B Rules.mch 24/02/2015 16:16
=] Images . RulesLeng.mch 24/02/2015 16:16

« Switch to “Classical view” * Open an Explorer

The only mode supporting “drag-n-drop” * Go to “Models” directory
* Drag-n-Drop “Resources.mch” to the component Tab

« Open the project by double-clicking New component Resources added in the list |

CLEARSY

SYSTEMS ENGINEERING

Proof System

Menu Bar 1 =
J =
I
COMPONENT
FORMAL MODEL
L
Tasks [
@& Edit
&) FRemove
Export as...
&) Type Check
Forced typeCheck
&) Generate POs
Rt S © oo
PROOF OBLIGATIONS 1
Check coding rules C| el
Automatic Refinement , o Adtomatic(Forced
B Check Automatic (Force 3)
Project Check component based ol
Code generator Replay
Customnized User Pass 4
Validate Rules T o
DEMONSTRATIONS - .
Properties... Forced automatic proof *
Unprove
U3 Interactive Proof
° ° Automatic proof Launcher
Call the Main Prover with force x View Obvious P05
Add User Pass
Edit Pmm

Proof System

e Select the component “resources”
* Generate Proof Obligations: 30 generated
e All unproved

e Start Proof Force 0
e 24 proved

e Start Proof Force 1
e Still 24 proved

* Start Proof Force 2
e 28 proved

e Start Proof Force 3
e Still 28 proved

& eve 2018 (OK|oK]31/3013%)
|[:1assi:3| view e |

o
Compeonent TypeChecked

0 CTx oK
0 mo oK

@
POs Generated Proof Obligations Proved Unproved
QK 0 0 0
QK 1 1 0
QK 30 0 30

Comp?rnent TypeChecked
) CTx oK
w0 mo oK
@ Resources QK

POs Generated Proof Obligations Proved Unproved

oK 0 0 0
oK 1 1 0
oK 30 F24 6

CﬂmpGnent TypeChecked
i CcTx oK
@ mo oK
@ Resources O

POs Generated Proof Obligations Proved Unproved

oK 0 0 0
oK 1 1 0
oK 30 128 2

CLEARSY

SYSTEMS ENGINEERING

Proof System

ving “Resources”

* The colouring of the model == proof status
in force 0
* Get a quick feedback about the model
* To prove the model, go interactive

Resources.mch

MACHINE

Fesources (nn)

CONSTRAINTS
nn: NAT1 &
not (nn = MAXINT)

DEFINITIONS
RESOURCES == (0..nn

VARIABLES
available,in use, faulty

INVARIANT
available <: RESOURCES &
in use <: RESOURCES &
faulty <: RESOURCES &
available\/in use\/faulty = RESOURCES &
available/\in use = {} &
available/\faulty = {} &
in use/\faulty = {}

INITIALISATION
available:=RESQURCES ||
in use:={} |
faulty:={}

OPERATIONS

bb <-- AnyAvailable = BEGIN
bb:=bool (not(available = {}))
END;

XX <-- AcquireResource = PRE
not (available = {})

THEN
ANY rr WHERE

Proof System

in Prover

- v—:‘
* Created in the early 90’s by Alstom signalling engineer

e 2 main principles:
— * Generate new hypotheses (bottom-up)
* Linked with goal
e Linked with hypotheses in relation with the goal

* Simplify goal predicate (top-down)

e Simplification mechanisms
 Mathematical rules, both triggered by hypotheses

e

Once an HYP is in the stack, it can’t be modified

Proof System

Proof System

wi

Patchprover
SolvePred
Skolemisation

Equalities

Patchprover
Contradiction if goal false
DED zone: H=>G

Simplification 3 x.P m
SolvePred
Rule package selection Modify predicates
before/after prover

Surtype any new goal

Heuristics for —P, 3 x.P

Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Proof System

Patchprover

SolvePred
Skolemisation

Equalities

Patchprover
Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Simplify predicate

Proof System

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover
Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Reduce quantifier range

Proof System

Patchprover
SolvePred

Skolemisation

Equalities

Patchprover
Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Proof System

Patchprover
SolvePred
Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Proof orientation...

Proof System - ——

\
1

l
J

f-a is a partial function

fromstot
SolvePred
Skolemisation f is a partial function ais a relation
fromstot fromutov

Equalities

Single letter identifiers are wildcards and may match

Patchprover with any valid expression
Contradiction if goal false

DED zone: H=>G

Simplification 3 x.P Proof with rules
SolvePred
Processing Rule package selection Predicates are broken down into

Goal Surtvbe anv new goal smaller/simpler predicates

Heuristics for —P, 9 x.P
Apply equalities in goal

Generate new hypotheses Provided for information only
Proof by case as mechanisms are not dire@@
Patchprover .

activable CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

|
|

Patchprover
SolvePred
Skolemisation

Equalities

Contradiction if goal false

DED zone: H
Simplification 3 x.P

SolvePred
nackage selection

De any new goal
Heuristics for —P, 3 x.P
ualities in goal
notheses

Processing

Apply eq
Generate new h
Proof by case

dd(x)

Deduction

If the goal is H => G, H is transformed and then added
to the HYP STACK
The goal becomes G

dd(0) performs deduction in force O

dd(3) performs deduction in force 3

dd(3) generates more new HYP than dd(0)
HYP may also be rewritten differently

&'

CLEARSY

SYSTEMS ENGINEERING

Proof System

|
|

SolvePred Deduction (raw)
Skolemisation
Equalities If the goal is H => G, H is added to the HYP STACK without
modification
Patchprover The goal becomes G

Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Processing Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Sometimes the prover performs %!&!? transformations
that are not suitable
Apply dd if you really need H in hypotheses

Proof System

|
|

SolvePred Mini Proof
Skolemisation
Equalities Starts the bounded prover (no divergent behaviour)
Performs deduction of the current force
Patchprover Triggers the mechanisms in sequence

Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Processing Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Add new HYPS on the STACK

Succeed to produce a new goal G’ # G
or
fail if no new HYP added and goal remains G

Proof System

|
|

SolvePred Proof
Skolemisation
Equalities Starts the full prover
Performs deduction of the current force
Patchprover Triggers the mechanisms in sequence

Contradiction if goal false

DED zone: H=>G
Simplification 3 x.P
SolvePred
Processing Rule package selection
Surtype any new goal
Heuristics for —P, 3 x.P
Apply equalities in goal
Generate new hypotheses

Proof by case
Patchprover

CLEARSY

SYSTEMS ENGINEERING

Add new HYPS on the STACK

Succeed to produce a new goal G’ # G
or
fail if no new HYP added and goal remains G

Proof System

= Behind the Curtain

B model (xml)]

L) ETMF_2018 (OK|OK[31]?103%%) | | | Resources OK l E Resources.bxml
&) Components Mew " .
B Dori /%) Resources.chk
B 1L Open
() Libraries e | | Resources.dep

Y zource WD lemmas

P LCHIP B — | Remove Resources.nf
P T1 Archive R .

l ESOUNCES. pmi
P TEST -J P

Proof status]

Open folder
| | Resources.pmi.but

| | Resources.pmi.res

 Select the Project | | Resources.pmil

* Right click and select “Open Folder” .| Resources.pmi?

* An Explorer shows up [J Resocurces.po

Proof obligation (txt)]

* Open “bdp” directory

| | Resources.pog

 Several files “Resources” with different extensions
| | Resources.poxml

Proof obligation (xml)]

EEEEEEEEEEEEEEEEEE

Proof System

= Behind the Curtain (Resources.po)

Hypotheses as packages named _f(1), f(2), etc.
PO definition in a line (first PO goal is _f(45))
Moving from first PO to second PO only requires to pop _f(12) and to push _f(22)

1 THEORY ProoflList IS

2 (1) & f(2) & f(14) & f(25) & RestoreResource.6,(_f(39) & f(3) & f(12) => _f(45));
3 _f(1) & f(2) & f(14) & f(25) & RestoreResource.5,(_f(39) & f(3) & f(22) => f(44));
4 f(1) & f(2) & f(14) & f(25) & RestoreResource.4,(_f(39) & f(3) & f(10) => f(43));
5 f(1) & f(2) & f(14) & _f(25) & RestoreResource.3,(_f(39) & f(3) & f(8) => f(42));
& f(1) & f(2) & f(14) & f(25) & RestoreResource.2,(f(39) & f(3) & f(27) => f(41));
7 _f(1) & f(2) & f(14) & f(25) & RestoreResource.1,(f(39) & f(3) & f(4) => f(40));
8 f(1) & f(2) & f(14) & f(33) & ReleaseResource.6,(f(3) & f(12) => f(38));
5 f(1) & f(2) & f(14) & f(33) & ReleaseResource.5,(f(3) & f(22) => f(37));
10 f(1) & f(2) & f(14) & f(33) & ReleaseResource.4,(f(3) & f(10) => f(36));
11 _f(1) & f(2) & f(14) & f(33) & ReleaseResource.3,(_f(3) & f(8) => f(35));
12 f(1) & f(2) & f(14) & f(33) & ReleaseResource.2,(_f(3) & f(6) => f(26));
13 _f(1) & f(2) & f(14) & f(33) & ReleaseResource.1,(f(3) & f(4) => f(34)),;
14 f(1) & f(2) & f(14) & f(25) & FaultyResource.7,(_f(3) & f(12) => f(32));
15 _f(1) & _f(2) & _f(14) & _f(25) & FaultyResource.6,(_f(3) & _f(22) => _f(31));

Proof System

= Behind the Curtain (Resources.pmi)

THEORY ProofState IS
Proved(9);
Proved(9);
Proved(0);
Proved(9);

Proved(Q); e PO status

Proved(Q@); * Proved(0) : proved in force 0

Proved(@); * Proved(2): proved in force 2

Proved(2);
Proved(9); Unproved

Proved(Q);
Proved(9);
Proved(9);
Proved(2);
Proved(2);
Proved(9);
Unproved;

EEEEEEEEEEEEEEEEEE

Proof System

= Behind the Curtain (Resources.pmi)

THEORY MethodList IS
pr;
pr;
prs,
pr,
prs e Saved demonstrations per PO (same order)
Prs * pr: full prover
E:‘ * ?:nothing saved (default when file created)

E:’ * When the model is modified and the PO order changes, the

pr; merger tries to find a “correct” allocation to avoid to lose demos
: J

pr;
pr;
Prs
Prs
d.

-2

w M= ® W 00 ~

=] O un

5
5
5
5
5
5
5
5
5
5

0 00

EEEEEEEEEEEEEEEEEE

Proof System

= Behind the Curtain (Resources.pmi)

THEORY PasslList IS
Force(@),?;
Force(@),?;
Force(@),?;
Force(0),?;
Force(0),?;
Force(@),?;
Force(@),?;
Force(2),(?;0;1);
Force(@),?;
Force(@),?;
Force(@),?;
Force(0),?;
Force(2),(?;0;1);
Force(2),(?;0;1);
Force(@),?;
Force(@0),(?;0;1;2;3);

List of forces tried
* Avoid to start again the main prover if the model has not
been modified and the forces already tried without success

N R ® O 00 ~

WO W WO 0 0O O

EEEEEEEEEEEEEEEEEE

POs on line 9 of Resources &

Proof System

‘= Interactive Proof

X

tialisation.1
tialisation.2
tialisation.3
tialisation.4
AcquireResource.]
AcquireResource.2
AcquireResource.3
FaultyResource.l
FaultyResource.2
FaultyResource.3
FaultyResource.d

Releasehesourc

ARl P n
m M M M M M
LA Pud LA P

Selected PO : Resources.AcquireResource.3 &

x

rr : available &
btrue

=

available — {rr} \/
(in_use \/ {rr}) \/
faulty = 0 .. nn

L]

S

Compeonent TypeChecked POs Generated Proof Obligations Proved Unproved

0 CTX QK QK 0 0 0
G Mo QK QK 1 1 0

() Resources OK QK 130 i 28 2

D T T T T P P PP PP PP

We still have 2 Unproved PO

MACHINE
Fesources (nn)
With the editor, we quickly check the 2 POs but nothing obvious
CONSTRAINTS
nn: NAT1 &
not (nn = MAXTINT)

Time to start the Interactive Prover
DEFINITIONS

FESCURCES == 0..nn @@ ,1 E X @@@@ @

available,in use, faulty

INVARIANT
available <: RESOURCES &
in use <: RESOURCES &
faulty <: RESOURCES &
available\/in use\/faulty = RESOURCES &
available/\in use = {} &
avallable/\faulty = {} &
in use/\faulty = {}

INITIALISATION
available:=RESQUERCES ||

in use:={} ||
faulty:={}

OPERATIONS

&'

CLEARSY

SYSTEMS ENGINEERING

Proof Edit View Help

A ODOD WOQO @ e m ey e ey W ek 5

Proof System

" = Interactive Proof Ul

£ Atelier B - Prover - Resources - ETMF 2013

SO0 B BBk 't?l

Menu bar with most common commands

Proof
tree

Situation g X

POs recently proved !

W

> (@ Initialisation

> € AcquireResource
> 9 FaultyResource
> (3 ReleaseResource
> (& RestoreResource

PO
list

4

for labl

Current Goal

~

.~/

- 7x

Proof command input

X
n)

Search HYP result j

Initial proof obligation

Theory list g X

Rules
list

» C\Tools\Atelier B full 4.5.0-beta.13\\pr...

' Search rule result

h

Search
rules
result

CLEARSY

SYSTEMS ENGINEERING

Proof System

e theorem prover

a proof tree

— Initial goal
ﬂ\ A proof is completed when all
the leafs of the proof tree turn to

Sub-goal 1.1 Sub-goal 1.2 be axioms for the prover
ulé 2 ruITS
Sub-goal 1.1.1 Sub-goal 1.1.2 Sub-goal 1.1.3 Sub-goal 1.2.1

rUI[4 /es\‘

Sub-goal 1.1.2.1 Sub-goal 1.2.1.1 Sub-goal 1.2.1.2

axiom axiom

axiom axiom axiom - CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

- Initial goal
ﬂ\ An unproved proof obligation is

represented by a proof tree
where at least one leaf is not an

rufe 2 axiom x

Sub-goal 1.1.1 Sub-goal 1.1.2 Sub-goal 1.1.3

ruT 4

Sub-goal 1.1.2.1

Sub-goal 1.1 Sub-goal 1.2

axiom

axiom @

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

Sub-goal 1.1

- Sub-goal 1.2

|

Sub -goal 1.1.1 Sub-goal 1.1.2 Sub-goal 1.1.3 Sub -goal 1.2.1
ruI 4 /\
5Ub803|1121 Sub-goal 1.2.1.1 Sub-goal 1.2.1.2
axiom axiom

B I

axiom aX|Om aX|Om

A successful interactive demonstration is a combination of proof interactive commands and prover execution

This demonstration (also called proof script) is saved and can be replayed at will to ensure that the proof @
obligation is true

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

Edit View Help

&@9)=

& xNext}

ctive Proof Ul

& 0000 OO OB O BHOO-EH OGS @ @ﬂ =] ¢

8 x|

available &

Farce(D)
Mest

“Invariant is preserved" &

"Check invariant ((((((available) \/ (in use))) \/ (faulty (nn))))"

available-{rr}\/(in use\/{rr})\/faulty = 0..nn

Current force (0)

Situation 8 x|

[] show only unproved POs

|I'(km:ul"lmmd

\AllPOs

> {3 Initialisation
v 2 AcquireResource
@ PO
& P02
e ro3
& P04
& PO5
& POB
> FaultyResource
> @ ReleazeResource
> @ RestoreResource

@

CLEARSY

SYSTEMS ENGINEERING

Proof System

Proof Ul proof commands
Aa0000 @GOG’[Q@@ @@l@@@@@ (5 e (@ wpy (e ke oo 2] A2

8 x|

rr: available &
v Force(D) "Invariant is preserved" &

Next "Check invariant ((((((available) \/ (in use))) \/ (faulty))) = (((0) .. (nm))))"

available-{rr}\/(in use\/{rr})\/faulty = 0..nn

> (@ Initialisation
v 2 AcquireResource
& POl
& poz
© ro3
& Po4

& PO5

@ Pos "
> FaultyResource
> @ ReleazeResource

> @ RestoreResaurce E L EA R 5 Y

SYSTEMS ENGINEERING

Proof System

" = Interactive Proof Ul

-a Atelier B - Prover - Resources - ETMF_2018
Proof Edit VWiew Help

A 000DCRUSC VBH BE MM O VETS ® GO @ © ® mwE ¥

[Proo 8 x] rr: available &
v Force(l) "Invariant is preserved” &
Next ~ "Check invariant ((((((available) \/ (in_use))) \/ (faulty))) = (((0) .. (mn))))"
eI H{ rr}\/ (in_use\/{rr})\/faulty = 0..nn
Double-Click the identifier “available” to show instances on the current goal
| Situation @ x|

[show only unproved POs

(AIPOs ¥

> 9 Initialisation

v e AcquireResource
@ po1
@ po2
 ro3
@ po4
& pos
& P06

> € FaultyResource

> @ ReleaseResource '
> G RestoreResource ‘

CLEARSY

SYSTEMS ENGINEERING

Proof System

active P}oof Ul

rr: available & Right-click the identifier “available”

"Invariant is preserved” & Select “sh - Search Hypothesis containing”
- Check i1nvariant ((((((available) Search hypothesis result

m Copy 4 3AVET Hypothesis containing "available"

available <: 0..nn
available\/in use\/faulty = 0..nn &
© sh-Search Hypothesis containing available/\in use = {} &

eh(Goal) - Use Equality in Goal available/\faulty = {} &

eh(Hyp) - Use Equality in Hypothesis not(available = {}) &

ae - Add Expression (Expr = pri_varM)

Select All

se - Suggest For Exist

Clear window

Open definition

@

CLEARSY

SYSTEMS ENGINEERING

Proof System

diddd(0)

Deduction commands are not available as the goal is not H => G anymore

A 0000 @99@[@@@!@@ PRy PPy (10) () [0 [c]ame (55) ch) (@)) (te) (e} [rorce0 5] A2

Proof

lavailable—{rr}kf{in_use\f{rr})\ffaulty = 0..nn :]
Force()
v dd(0)
Next

The goal is now G

d(0) appears on the proof tree
The PO is not proved

The Next indicates the location of the next command in the proof tree

&'

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

eractive Proof Ul

Search hypothesis result

o
ilx|
B

I show Reduced PO with first level hypothesis
avallable-{rr}\/(in use\/{rr})\/faulty = 0..nn

L LR DL

Select “rpl” to show all the hypotheses

rr: available

not (available = {}) &

in use/\faulty = {} &
avallable/\faulty = {} &
available/\in use = {} &

faulty <: 0..nn &

in use <: 0..nn &
available <: 0..nn &
nn<=2147483¢cd¢c &
l<=nn &

not(nn = 0) &
nn<=2147483¢47 &
O<=nn &

nn: INTEGER &
not(nn: {0}) &

nn: NAT &

not(nn = 2147483¢€47) &
nn: NAT-{(0} &

available\/in use\/faulty = 0..nn &

that have a symbol in common with the
goal

&

CLEARSY

SYSTEMS ENGINEERING

Proof System

ractive Proof Ul
@ @@@@@ @9'@ @ @@ W? Search hypothesis result

: - "Check invariant ((((((available) \/ (in _use))) \/ (faulty)))
avallable-{rr}\/(in use\/{rr})\/faulty = NAT = 0..2147483647

x|
:} INT = -2147483647..2147483¢477 &
x|
M

btrue &
nn: MNAT-{0} &
not(nn = 2147483¢€47) &
nn: NAT &
not{nn: {0}) &
nn: INTEGER &
> D<=nn &
:] nn<=2147483€47 &
not{nn = 0) &
l<=nn &
nn<=2147483¢4¢ &
v sh(a) available <: 0..nn &
[______] in use <: 0..nn &
faulty <: 0..nn &
available\/in use\/faulty = 0..nn &

£

>

sh(<fornnu|a>) available/\in use = {} &
. available/\faulty = {} &
Search HypOthESIS in use/\faulty = {} &

not(available = {}) &
rr: available &

Show all hypotheses matching the formula "Invariant is preserved" &

Proof System

ractive Proof Ul

sh(available)

Hypothesis containing "a = b" Hypothesis containing "available"
NAT = 0..2147483647 available <: 0..nn
INT = -2147483e47..2147483e47] & available\/in use\/faulty = 0..nn &
not(nn = 2147483647) & available/\in use = {} &
not(nn = 0) & available/\faulty = {} &
availlable\/in use\/faulty = 0..nn & not (available = {}) &
available/\in use = {} & rr: available &

available/\faulty = {} &
in use/\faulty = {} &

t ilable = & :
not(available = {1) sh(available _and rr)

Hypothesis containing "available and rr"
rr: available

sh(not(a))

Hypothesis containing "not(a)”
not(nn = 2147483¢47)
not(nn: {0}) &
not(nn = 0) &

not (available = {}) & ;; :ﬁ

Your turn: search for typing hypotheses CLEARSY

SYSTEMS ENGINEERING

Proof System

Proof (1 pending geoals) g X

avallable-{rr}\/(in use\/{rr})\/faulty = 0..nn

* Force(l)
v dd(l)

pr
Mext
notirr available) == available'/(in_use'/{rri)faulty = Dunn

The prover has started a proof by case on rr: available
We are in the first case: rr: available=> G
The second case is pending (in pink): not(rr: available) => G

&

CLEARSY

SYSTEMS ENGINEERING

Proof System

a3 @@l@@@@-p ee® @ O O ko5 W

nteractive Proof Ul j

available-{rr}\/(in usewirrjjuﬁuify = 0.

Predicate Prover

* Based on tableau-method

* Used to prove predicates with few hypotheses

 ppO: predicate prover on goal

 ppl: predicate prover with first level HYP

* pp(rp.0): predicate prover with typing HYP

* pp(rp.1): predicate prover with first level and typing HYP

Your turn: complete the proof with pp(rp.1)

&

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

Proof

* Force(d)
 dd(0)
PR TTIT NN

Mext

| PO proved

Situation

[] show only unproved POs

|PﬂSfE€E!1|I|‘y’ proved

Al POs

Green frame == successful proof

& POl

5 {3 Initialisation

v & AcquireResource

'ﬂms
PO4

& PO5
& P06

| PO proved

@%

CLEARSY

SYSTEMS ENGINEERING

Proof System

active P}oof Ul

Proof Edit View Help

@@ 000 Save the demonstration
M' Save without question i—

Proof Edit WView Help

i 090 9- oo Reset the proof: the demonstration appears in italic

| Reset

¥ Force()
Mext

dd()
pp(rp. 1)

Proof Edit View Help

53 O VOO0 WOYE)® @ step until end: replay the saved demonstration
Step until End h

* Force()
Mext
dd() ‘

ppirp.1)
CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

Proof Edit View Help

A0 RO WE@ mE e Wk

Proof 8 x|

rr: available &
v Force(0) "Invariant is preser
MNext "Check invariant (((

o (in use))) \/ (faulty))) = (
=>

&

:

avallable-{rr}\/(in_
= 0..nn

Situation 8 X

£ te{AcquireResource.3,Replace.Gen.Unproved) 7 *] show only unproved POs

|P{:sremlﬂ',r|:rnved w |

Try to apply saved demonstration on POs.

I - s]

No FO to prove. 3 &3 Initialisation ~

1P05 to prove. A4 @I AcquireResource

@ PO
& po2
& Po3
@ Po4
& POS
& PO6 W

Mavigation information available

LB

>

[] Close the dialog when the proof attempts are finished

—— Search hypothesis result 8 x|

I
e

<

in use <: 0..nn & 2
available <: 0..nn &
chuireksaurce.&

nn<=2147483c4¢ &
Try to execute the saved demonstration on all unproved PO (“try everywhere globally”) L try everywhere globally

Proof System

ractive Proof Ul

£ User Pass .
? X
Some Pos has been proved.
Do you want to create or update the User Pass 7 “~ UserPass creation
(5ee preferences)
parameters
oK Cancel
[+*] Filter on operation name
The proof is successful L] Fier on patter
You are asked to keep the new Keep goal as pattern
demonstration in the User Pass el eptmaly e
Jokerize goal with level:] E|
[] show also automatic demonstration
The User Pass contains all proof tactics of a component
Next || Cancel |

CLEARSY

SYSTEMS ENGINEERING

Proof System

= Interactive Proof Ul

preview

“ UserPass creation

1 Operation(AcquireResource) & ff(0) & dd(0) & pp(rp.1):
2 Operation(FaultyResource) & ff(0) & dd(0) & pp(rp.1)

 Open the Model Editor for “Resources”
* Select File / Open pmm

£ Resources.pmm - Atelier B
File = Edit View Search Help

Mew Ctrl+M
Open Ctrl+ O
Insert file...
Recent files

Open B component Ctrl+5hift+B

Open pmm Ctrl+Shift+P

Open rmf Ctrl+5Shift+R
Previous File Ctrl+5Shift+Backtab
Mext file Ctrl+Tab

é, Save Ctrl+5

Resources.mch Resources.pmm

I Finish || Cancel

Outline

1-

2

3
4
5

THEORY User Pass IS

Loy & dd(0) & po(rp,l);

f£(0) & dd(0) & pp(rp.1)

Eperation{FaultyResource] &f
L

Name Filter
Could be pattern filter

parameters

[] Filter on operation name
[] Filter on pattern

Proof commands

~

] 9 Show errars only (0)

e @ User_Pass
€% User Pass.]
€% User Pass.2

Contains 2 elements

@.

CLEARSY

SYSTEMS ENGINEERING

Proof System

= Checking Proof Replay with User Pass

— ETMF_2018 (OK]OK|31]0]100%)
ETMF_2018 (OK|OK]31]0|100%)

— Classical view w G

Classical view w E

Component TypeChecked POs Generated Proof Obligations Proved Unproved B0 Checl

Component TypeChecked POs Generated Proof Obligations Proved Unproved) cTx oK 0K 0 0 0 .
© cTx oK oK 0 0 0 © Mo oK oK 1 ! 0]
@ Mo oK ok] 1 2 @ Resources (G . . 20 o]
() Resources QK oK 30 3D] Tasks r
@ Edit
. Remove
The component “Resources” is fully proved = coport o5
e Select the Component “Resources” @ Type Check
» Select Component/Proof/Unprove = T
) Generate POs
Proof L Automatic (Force 0)

o
28 Automatic (Force 1)

Automatic Refinement L4 Autnmat?c (Force 2)
BD Check Automatic (Force 3)

Classical view e G o
Project Check component based O UserPass

Check coding rules

ETMF_2018 (OK|OK|31]30]3%)

) Replay
Component TypeChecked POs Generated Proof Obligations Proved Unproved SIlElEnEmiD Customnized User Pass "
@ CTx OK oK 0 0 0 Validate Rules T nmiey
% MO oK oK 1 1 o Th t “R ”
@ _ : e componen esources _
() Resources OK oK 30 ‘0 30 Properties... Forced automatic proof »

iS unprOVEd Unprove

Proof System

Select the component “Resources”
e Click on “Up” (Proof User Pass)

*Checking Proof Replay with User Pass User Pass tactics are applied sequentially on
remaining POs

Uncheck the “hide finished tasks” -
Fx0000ee
@ide Finished tasks (. Demr mla(DKIDKBlIEJlW

Project Compeonent Action Status Messages Server —| Classical view

e

ETMF_2018 Resources (1] Finished localhost
ETMF 2012 Resources (2] Finiched Unproving successful localhost Component TypeChecked POs Generated Proof Obligations Proved
0 CTx oK oK 0 0
@ mo OK oK 1 1
1 Resources; OK oK 30 0
Tasks Errors
Project Component Action Status Messages erver
ETMF_2012 Resources o Finished lecalhost
ETMF_ 2012 Resources (2] Finished Unproving successful lzcalhost
ETMF_2012 Resources @ Finished End of Proof lzcalhost |
CLEARSY

When the execution is finished, double click on the task description

Proof System

£ Proof Pass User_Pass.2

@ Proof Pass User_Pass.1

2 Proof Pass User_Pass.2
Finished

2 Proof Pass User_Pass.1

@ Proof Pass User_Pass.2
Finished

1

Operation (AcquireResource) & ff(0) & dd{ﬁi & ppl(rp.l):

2 Operation(FaultyResource) & ff(0) & dd(0) & pp(rp.l)

= Checking Proof Replay with User Pass

ot

- |
Still 30 unproved POs Mext PO
Mext Operation
- 2%
Operation Proved Unproved
TOTAL B 0
clause Acquire.. & 0
Still 24 unproved POs Mext PO
Mext Operation
I
Operation Proved Unproved
TOTAL 7 0
clause FaultyRe... 7 0

UserPass.1 proved 6 POs
of AcquireResource

ETMF_2013 (OK|OK]31]17]45%)

| Classical view ~ Ea| Clear

Component TypeChecked POs Generated Proof Obligations Prowved

M CTX 0K 0K 0 0
@ Mo oK oK 1 1
() Resources QK oK 30 13

New Proof status
The tactics proved more than when
used after pr

|
UserPass.2 proved 7 POs @

of FaultyResource CLEARSY

SYSTEMS ENGINEERING

Proof System

= Checking Proof Replay with User Pass

Let us edit the Resources UserPass

Resources.mch Resources, pmm E Outline

1 - THEQRY User Pass IS o A

2 - Add the command “pr

3 OperatTOn(AcquireResource) & ff(0) & dd(0) & pp(rp.l): [1€ show errors only (0)

4 Operation(FaultyResource) & ff(0) & dd(0) & pp(rp.1l)

5 END wr User Pass

E €% User_Pass.1
€% User_Pass.2
€% User_Pass.3

When saved, we get 3 User Passes
 Unprove the component “Resources”

* Select “UP” (Proof User Pass)
* Double click the task description when completed

EEEEEEEEEEEEEEEEEE

@ Proof Pass User_Pass.]
0 Proof Pass User_Pass.2

0 Proof Pass User_Pass.3
Finished

= Checking Proof Replay

The component is now proved in a single operation

The very idea is to avoid to lose interactive
demonstration when a model is modified

) Proof Pass User_Pass.]
@ Proof Pass User_Pass.2

) Proof Pass User_Pass.3
Finished

Still 30 unproved POs Mext PO
e
Operaticn Proved Unproved
TOTAL 25 5
clause Initialisaticn 5 0
clause AcquireResource 4 2
clause FaultyResource 4 3
clause ReleaseResource B o
clause RestoreRescurce € 0

) Proof Pass User_Pass.1
) Proof Pass User_Pass.2

@ Proof Pass User_Pass.3
Finished

Still 5 unproved POs

Next PO

_ e Mext Operation
Operation Proved Unproved
TOTAL 2 1]
clause Acquire.. 2 0

Still 3 unproved POs

I

Next PO

Mext Operation

Operation Proved Unproved

TOTAL 3 0

clause FaultyRe.. 3 0

Proof System

= Back to the Proof Tree

Interactive Prover: go to the PO

component
open in an editor the file

Copy the sequence of commands
Paste it in the command pane

Press return

These commands should proof the current PO

Proof g X

* Force(d)
L mp
v ahlavailable-{rrlin_use'Jrrllfaulty < O.nn)
pr

[pr

Such a demonstration can also be seen as a tree:

e column number becomes line number for the tree
* each command is linked with commands located

below

of the v mp | |
w ah(l.nn <: available-{rr(in_use' /e faulty)
et mp
* ahixo availablel/in_use'/faulty)
* ehiavailable'/in_use\/faulty)
pr
pr
s P
| Force(0) a
[
_mp
, | The resulting proof tree
| ah(...)
| (o)
(ah(.) |
(mp] pr]

[ah(...)

[eh(...l)] [pr]

Lpr]

EEEEEEEEEEEEEEEEEE

Proof System
with force O and 1 starts prover

without proof by cases tactics
= Using mp

example
e add machine , start prover with force 3,
 examine unproved PO, the goal can be simplified,

aa—-((0..10/°{3})—-(2..12)) = aa—-{3}\/(aa/\B..12)

. , in the goal the expression in simplified in
. the PO is proved
difference between and

* restart demonstration by replacing by
* the remaining goal is
* in fact, the prover did 2 cases because of the hypothesis
, it’s useless v Force(0)

b F”'
Mext

not{wvw==3) => aa-({3}-(8..12

Proof System

H = Initial goal

|

examp|e axiom axiom

 add component AddHyp and start proof with force O (do not use force(2), is proved)

 one PO is not proved, type in dd(0)

 the PO is true because ff is overloaded with elements of ff, so the result of this
overloading remains equal to ff,

* the prover did not have the idea to demonstrate
0..5 <+ ff <: ff

e typein ah(0..5 <+ ff<: ff) & pr & pr

 the PO is proved

A_dding Hypothesis: ah

roof (1 pending goals) B x|

O..5<|ff <: £

* Force(0)
v dd(l)
~ ah(D.5<|ff <: ff)
Mext

0..5[ff <2 ff = > ff<+ (0..5<[fF) = ff CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

* toreplace an expression el with e2, under the hypothesis el=e2 (or e2=e1)
the replacement takes place:

* inthe Goal: eh(el, e2) shortcut eh(el) (e2 is the first possible value)
* in all the hypotheses: eh(el, e2, AllHyp) to create new hypotheses

e in hypothesis H: eh(el, e2, Hyp(H))

&

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

= Suggest For Exist: se

Example: machine and its refinement
* add these components in the project and start proof with force O,
* you should demonstrate that ss contains a value such as is not empty and
* the prover is not able to generate such attempts (except force 3), it only knows how to demonstrate:

#ss.(ss <: NAT & not(ss = {}) & 3: ss)

Interactive demonstration

Existential goals are found
* inan ANY xx WHERE ... non directly refined
* when using non refined abstract constants

EEEEEEEEEEEEEEEEEE

Proof System

instanciation of a « for all » predicate
* ph(x0, x.(P, =>Q,)) to particularize !x.(P, => Q,) for the value xO
* first P, has to be proved, then the new hypothesis Q , is generated

use of an « imply » hypothesis (Modus Ponens rule)
 mh(P=>Q)
* under the hypotheses P=>Q and P, the new hypothesis Q is generated

&

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

y Case: dc
_ _ _ - Initial goal
The interactive command dc(x) tries to prove the current
goal in two cases: x and not(x) /\
_ _ X = Initial goal not(x) = Initial goal
Its action on the proof tree is as follow: - & (x) &

* The current goal has to be proved under the
hypothesis x

» The current goal has to be proved under the . :
hypothesis not(x) axiom axiorm

@

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

by Case: dc

The interactive command dc(x, p..q) tries to prove the - Initial goal

current goal for all possible values of x that should strictly
belong to p..q
- X:p..q x=p = Initial goal x=q = Initial goal

Its action on the proof tree is as follow:
* X! p..q hasto be proved
« The current goal has to be proved under the various

hypotheses x=p, x=p+1, x=p+2, ..., Xx=q axiom axiom axiom

@

CLEARSY

EEEEEEEEEEEEEEEEEE

@.

CLEARSY

SYSTEMS ENGINEERING

Proof System

>ontains more than 2500 rules

€ InRelationXY.1
domi(a) : POWI(s)
rania) : POW(t)
=»
a:s=->1t

proving a:s<->tis equivalent to proving dom(a): POW(s) and ran(a): POW(t)

axiom

% Some rules are axioms for the prover

O InFINXY.127
p..q: FIN(INTEGER) any interval p..qis a finite subset of INTEGER

O Equalityxy.131
binhyp(B\VA = C)

- AvB=C istrueifgya=c isan hypothesis

CLEARSY

SYSTEMS ENGINEERING

Proof System

atical Rules
Simplify predicates (goal or hypotheses) [type 2]

@ SimplifyRellmaXy.27
(r]>u){v] (r>u)lv] is rewritten in v} \u

r[v]

@

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

ical Rules

Generate new hypotheses by combining them [type 3]

) GenEqualityX.1
a==h
b<=a
=
a=h

if 2<=b is a new hypothesis and b<=a an existing hypothesis then generate hypothesis a=b

@

CLEARSY

EEEEEEEEEEEEEEEEEE

Progkystem

* Rules available on the “Theory List” panel

* Grouped in packages

* View as a tree: all rules displayed

* View as a list: only the rules that can be triggered
displayed

Theory list

View as list ~

v W 1.2
band binhyp(g = v)
band bnumiv)
band binhypl(g = w)
band bnum(w)
bnot{btest(v = w]]

. band binhyp(not(v = a))
band binhyp(notiv = b))

Elements displayed in bold hold

band binhyp(v: (i.])*E})
band bnumli)
band btestij==i]
bguard({ContraEnumAllMNoty; ARI~) : ContraEnumAlINetG(i | j| v | E))

Theory list

View as tree

¥ ChTools\Atelier B full 4.5.0-beta. 13\ presshinclude SetOfRules. kernel. prnm

@ SimplifyX

) RecEqualityx

W FindLabX

W LabelReck

v Associativity Xy
& CommutativityXy
SimplifySegEnuxy
SimplifyBoolxY
SimplifyExstXY
SimplifyFunctionXY
SimplifylntMax:cdy
Simplifylnthiny
SimplifyIntP XY
SimnplifylntParxy
SimplifyInt51GXY
SimplifyRelComXy
SimplifyRelDoalongxY
SimplifyRelDoaxy
SimplifyRelDomXY
SimplifyRelDorLongXy
SimplifyRelDorky
SimplifyRelFoniY
SimplifyRelld
SimplifyRellmalongXy
SimplifyRellmaixy
SimplifyRellnviy
SimplifyRelOwveXY
SimplifyRelRaalongXy
SimplifyRelRaaky
SimplifyRelRaniy
SimplifyRelRarLong®y
SimplifyRelRarxy
SimplifySeqDomixy
SimplifyseaOoexl

PO OOOOC

Proof System

= Mathematical Rules

User rules should be used when everything else failed
the number of rules added should be as small as possible
Reasons:

symbol not (well) covered (ex: transitive closure)
simplify or generalize complex proofs

Rules are added in:
Component file (<component.pmm>) — rules are only visible by the component
PatchProver (bdp/PatchProver directory) — rules global to the project

Rules may be validated by the predicate prover (but again no guaranty that validrules are always demonstrated)

EEEEEEEEEEEEEEEEEE

Proof System

* goto AssertionLemmas.3, type in dd to load hypotheses 10..20<|£f = £f
e add the rule (; is required to separate 2 rules)
© f: S 4->T => S<|f = f

 compile and apply this rule: pc & ar(MyRules.1,0nce)

* displayed goal contains a one-letter identifier: non provable.

Wilcard instantiation (one-letter identifier) is only done within the goal
if a joker has to be instantiated by a hypothesis, binhyp should be used

e

binhyp is a guard. If the guard is evaluated as true, the rule is applied. CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

ematical Rules

v & MyRules
v
* correct the rule o
. binhyp(f: S +-> T) => S<|f = £ | prlTacC.)
rp(Tac(...])
* retry: it works (.
Theory list
10..20<|£f = ff Theory ar(..,Mult)
ar(...Fwd)
» CA\Tools\Atelier B full 4.5.0-beta.13\\presstinclude\SetOfRules.kernel.pmm ar(..., Goal)
v DAOM_GOINGY 3 Tute Preuve ETMPiressourcesimodels/Rules.pmm ar(... AllHyp)
v @ MyRules Add rule
v) MyRules.1 _
binhyp(f: & +-» T) Add rule replacing current proof
==
S«ff =1

Proof g X

¥ Force(0)
¥ dd
ar{MyRules.1,Once)
Mext

@

CLEARSY

SYSTEMS ENGINEERING

Proof System

= Proof with Assertions

Assertions are predicates which are part of B models their only role is to ease proof

2 kinds of assertions :
e clause global to a component
it should be deduced from the invariant and the previous assertions (order is important)
assertions become hypothesis of other PO

e substitutions local to an operation
each assertion should be proved with the properties of variables at the location of the
assertion
assertions become hypothesis in the PO concerning the substitutions located after the
assertion

EEEEEEEEEEEEEEEEEE

Proof System

example: machines Assertions et AssertionsO (with and without assertions)

* examine differences between these two machines, ASSERTIONS
ff~ : NATURAL +-> 0..100

* the assertion is true because: a function strictly increasing is injective

B emve 2018 (oKkjoK]59]5]91%)
|!:I.assnd' view A | [E [

* add these machines and start proof with force 3,

* all PO have the same complexity

) Assertions [OK 0K 12 11 1

() AssertionsD QK QK 16 12 4

advantage: assertions allows to factorise proof of operations of a component.

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

= Proof with Assertions: substitution ASSERT

example: machine Assert and refinements Assert 1 et Assert O (with and without assertion)

* examine differences between these 2 refinements, ASSERT
(zz >= 1) <=> (xx >= ()

assertion precise how the IF is refined, the case yy >= 1 corresponds with the case xx >= 0 of the specification,

s

TypeChecked POs Generated Proof Obligations Proved Unproved

. Component
* add these components and start proof with force O, © Asert OK oK | 1 0
6 Asset 0 OK oK 3 1 2 e,
) Assert 1 oK oK 4 3 1

* PO have the same complexity

advantage: assertions allow to ease proof of an operation.

Complete the proof of the remaining POs (hint: with only one command)

&'

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

Prover Qualification

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

Droof Algorithm
considering only proof requiring more than one step

Have a look at the goal -
Search for related hypotheses
|dentify (nearly) applicable rules

|ldentify missing information
New hypothesis
New simplification / resolution rule

Add information

One step ahead: try to simplify/solve %

—1 CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

pplication DMS Sequencer Event-B model of an inertia central SW sequencer

Used for SW validation
11 refinements

30% automatic proof only ...

Project Status for SEQ

Component TC POG nPO nUN %%aPr
dmsd0 oK Ok 42 13 a7
dms01 OK OK 1 1 0
dms02 OK OK 5 5 0
dms03 OK OK 16 3 50
dms04 OK OK 16 3 50
dms05 OK OK 13 12 33
dms0& OK OK 17 13 23
dms07 OK OK 12 8 33
dms08& OK OK 24 17 29
dms09 OK OK a0 40 20
dms 10 OK OK 31 19 38
dms_valuation09 oK K, 32 32]
dms_valuation03 _r oK K, & &] CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

L

1 h h T
time: INTEGER & Model: dms00

morrow: INTEGER & . .
victor: PROCESSES & Proof obligation: Swap.21
leftspan: INTEGER &
clockO+l<=time &
timet+l<=morrow &
not (clock(. .morrow/\dom (Schedule) = {}) =>
clock(. .morrow/\dom(Schedule) = {time} &
elected0: Tasks => time<=clockO+terml (slectedl) &
electedl: Tasks =» leftspan = terml(elected0)-(time-clock0) &
not (terml [Schedule[{time}]] = {}) => terml[Schedule[{time}]] = {0} &
victor: {Phantom}\/Schedule[{time}]\/term0~[NATURAL-{0}] &

victor = Phantom =>» Schedule[{time}] = {} &

victor = Phantom =» terml~[NATURAL-{0}] = {elected0} &
victor = electedl => l<=leftspan &

Schedule[{time}] = {} => electedl: Tasks &
Schedule[{time}] = {} => time = clockO+termO (electedl) &

task: Tasks &

"*Check that the invariant (!task. (task: Tasks => SIGMA (time) . (time:
(0. .clockl-1<|Schedule)~[{task}] | Deadline(task)) = SIGMA (time) . (time:
(dom (spans0)<|log0)~[{task}] | spansl(time)-time)+terml (task))) is preserved by
the operation - ref 3.4'"
=>

[timeSD} .(time50: (0. .morrow—-1<|Schedule)~[{task}] |
Deadline (task)) = SICGMA(time$0). (time$0: (dom(spans0O\/{clock0|->time})<|
(log0\/{morrow|->victor}))~[{task}] | (spans0O\/{clockO|->time}) (tim=50)-
time$0) + (term0<+ ({Phantom}<<| {electedl|->leftspan}\/ (Schedule[{time}]<|
Deadline))) (task)

Proof System

Demonstrate that >, D(t1) = 3,, D’(t2)
17 local hypotheses
39 hypotheses (16 for typing)

250 « related » mathematical rules

To help identifying missing bits, holding guards a
bold

re

Slmpl ifyRelFoniY.36

o
O <
(6] mmpn@RaDomxvlg
 SimplifyRelDorLongiy.3
O SimplifyRellnvXY.6
g Commutativityxy.4
(5] CommutativityXY.22
@ CommutativityX¥.25
O SimplifySetUnixXv17
band bsearchi{{a},b'/cx\/z)
band binhyp(a : d)
bsearch(d,x\/z,y)
blhvar(Q)
(a:d)
==
b\/c
Wz
 GenEqualityX.2
€ GenEqualityX.3
O SimplifyRelFonXY.16
 SimplifyRelDoaXy.3
@ ContradictionXY.30
EqualityxY.60
EqualityXY.70
EqualityX¥.132
EqualityxY.143
EqualityxY.144
bl.12
GenEqualityX.l
GenEqualityX.4
GenEqualityX.5
GenObvPredicated.25

[
[
[
[
[
[
[
[
]

elelelelegeTeTeege)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

| b GenObvPredicateX26

e

CLEARSY

SYSTEMS ENGINEERING

4 @ DMS SIG
M DM5_SIGL
Y DMS_SIG2

Proof System

(» DMS_SIG3
 DMS5_SIGA
» DMS5_SIG.S
M DMS_SIGE

Proof Algorithm O ous.se7

23 rules added to the whole project I e

» DMS_SIG11
™ DMS_5IG12
0 DMS_SIG13
/* DMS SIc.5 */ 4 @ DMS_DIV
bmatch(x,P,2,v) & g gm::gﬁ
bmatch(x,E,F,v) & g DMS_DIV3
DIMS_DTV4
x\(Q,F) & 4 & DMS_MOD
v\ (P, E) @ DMS_MODA
& DMS_MOD.2
== 4 @ DMS_MUL
= O DMS_MULL
SIGMA(x) . (P|E) SIGMA(v) - (Q|F) DMS MUL2
4 & DMSIND
» DMS_IND.1

2« P(E) = 2, Q(F) if e
- P(x)=Q(y) if x is replaced by y in P(x)

—

- E(x)=F(y) if x is replaced by y in E(x)
- xisfreeinQandF yisfreeinPandE @

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

r'AIgorithm

B X
View: |Hﬂies -
Mame Yalidated I
4 Loaded Files 3/23
4 (P PatchProver* 3/23
@ DMS_SIG 0/13 1
4 & DMS_ DIV 1/4 3
'ﬂ DMS DIV Unproved (OPR already tried)
'ﬂ DS DIVZ Unproved (OPR already tried)
ﬂ DS DIVS Unproved (OPR already tried) =
™ DMS_DIV4 Proved (PP
- g DMS_MOD 0/2
4 &y DMS_MUL 2/2
O DMS_MULL Proved (PP
O DMS_MUL2Z Proved (PP
i g DMS_IND 0/1
- g DMS_FIN 0/1 i
| i den 'V nenen 1N

4 & DMS_SIG
3 DMS_SIG.1
3 DMs SIG.2
O DMS_SIG.3
) DMS_SIGA4
) DMS_SIG.5
) DMS_SIG.6
O DMS_SIG.T
O DMS_SIGA
» DMS_SIG9
@ DMS_SIG10
@ DMS_SIG11
™ DMS_SIG12
 DMS_SIG13
4 & DMS_DIV
@ DMS_DIV1
@ DMS_DIV2
 DMS _DIV3
) DMS_DIV4
4 & DMS_MOD
@ DMS_MODA
@ DMS_MOD.2
4 & DMS_MUL
@ DMs_MUL1
O DMS_MUL.2
4 & DMSIND
) DMS_IND1
4 & DMS_FIN
) DMS_FIN.1

&

CLEARSY

SYSTEMS ENGINEERING

Proof System

4 Force(0)
4 dd

4 ah{(0.morrow-1<[Scl [{task}] = (0..clocko-1<[Scl [taskIV/(l
4 ahitime+1<=morrow)
4 ah{clockO+1<=time)

4 shinot(clod

={}=> clockd.

4 ah{D<=clock)
pRlrp)

4 dd

= {time})
4 eh((0.morrow-1<[Schedule) - [ftask}]_h,Goal)
4 ar(DMS_S1G.2,Goal)
4 ah(clockd+1 < =time)
pp(rp.0)
f{clock]-» time})<|(Iog0\/{
4 3h(time+1<=morrow)

ctor]))~[{task}] = [t
4 ah{clocki+1<=time)

KV clockD}<]l
4 ah{dom(spans0) = dom(log0)-{clockd)
4 ah{dem(log0) <:

pplrp.0)
< dd

0..clockd)

clockl)] . I
{clockd]-» time})<|logd\/ |
4 ar(DMS_SIG.2, Goal)

ctor))-Ittaski,_h, Goal)
4 ah{dom(spans0) = dom(log0)-{clock0})
pp(rpd)
+ ah(imes0).(times0; [log0)~[itask}] | (spans0\{elockd}
4 2r(DMS_SIG.3,Once)
mp

(times0:

: | [itask}] | (spans0\/{clockd]
4 ah; 50).(times0: ({clockdy<|l
4 ar(DMS_SIG3,Once)

k] | (spans0\A{clockd)

,_h,Goal)

5
4 ah(dom(spans0) = domilogl)-{clockd])

4 ah(spans0: INTEGER <-> INTEGER)

(timeS0: ([clocka}<]|

pplit.0)
4 dd
4 eh((t

4 ah(; S

S0: ({clock <] i

K|
i

50: ({clockD}<|logh)~[{

4 dcftask = elected0)

(spans0\/{clockd)
1| 5

,_h,Goal)

4 eh(elected0 task,Goal)

I= <[|-=Ieftspaniy/

4 ah(({clockl}<|log)~[{taskl] = {clockd])
4 ehitask,_h,Goal)

4 eh{electedo, h,Goal)
mp
4 dd
4 eh({iclockD}<|log)~[{task}],_h,Goal)
4 ar(SimplifyIntSIGKY12,Goal)
4 oh

= leftspan)
i litask]-> lefts Deadline)))

mp
4 dd

d < task->leftspan
4 ahftask: }

4 ar(SimplifyRelFenXY8,Goal)
4 ahitask: dom({Phantom}< <[{taskl-> leftspan})}
mp
4 dd
4 ar(SimplifyRelFanXY.14,Goal)
4 ah(not(task = Phantom))

mp
ppirp0)
4 dd
4 ch

{ e <[{task] pan}
4 ar(DMS_SIG.1,Goal)

_h,Goal)
4 ah(notitermi{elected0) = 0))
4 ah(electedl: Tasks)
4 eh(elected),task, Goal)
ahitask: Tasks)

={h=> ={0n
4 ah(dom(term0) = Tasks)
4 ah(ran(Schedule) = Tasks)

136 steps

4 eh(elected,task, Goal)
pp(rp.0)
4 ah(leftspan = term0 (elected0)-(time-clack0)
4 ah(elected): Tasks)

4 eh(electedd;task, Goal)

{Phantom < <|{clected0| > leftspan]\/

s proof tree:

4 ar(SimplifyRelFonXV8,Goal)
4 ahitask: dom(Schedulelftime}]<[Deadline))
mp
< dd
4 ar(SimplifyRelFonXV.15,Goal)
4 ar(SimplifyRelFonXY.3, Goal)
4 ah(({time}<|Schedule)~[{task}] = {time})
4 ah(task: Schedulel{timell)
PR(p0)
dd

4 eh((ftime}«|Schedule)-~[{taski] ftime}, Goal
4 ar(SimplifyIntSIGKY12, Goal)
4 ar(DMS_SIG.1,Goal)
4 ahinot(task = elected0])
4 ehielectedd,_h,Goal)
mp

4 ahitask: Schedule[{time]])
4 ah{ran(Schedule) = Tasks)

4 ah(ran(Schedule) = Tasks)
4 ah{dom(term0) = Tasks)
pp(rPO)

4 dd
4 ar(SimplifyRelFonXY.7,Goal)
4 or(DMS_SIG 1, Geal)

4 ah(not(task: Schedule{timei]))
pp(rp.0)

4 ar(DMS_SIG.1, Goal)

4 ahinot(task = elected0))

4 eh(elected, h,Goal)

mp.
mp
4 dd
4 ah(; (timesS0: I [{task}] 5 (times0: ({clockD}<] [itask]] | time-time...
mp
4 dd
4 eh((time$0: | [itask}] | 4imes0; (timeS0: { clockd)<[logh)~[{task] | ti...
4 eh (timeS0: ({clockD <]l [itaskl] | 51 i It |->Ieftspan)
4 phitask, task.(task: Tasks => 0 = it | Irtaskl]
mp
4 ah((time: (0..clock0-1<|Scl [itask)] | D
r(DMS_SIG4,Once)

4 dd
a

h(

(time: (0..clockd-1<[5cl
4 ah: (ti

[{taskll| D

_h,Goal)
| Ktask |
2r{DMS_SIG.5,Once)
4 dd
a

(times0: (0..clockd-1<[S

h(: (tirn

Jlog)~[(task] |
mp

. Goal)

CLEARSY

SYSTEMS ENGINEERING

Proof System

4 (dc(task: Schedule[{time}])
4 dd

4 ahitask: doem({Phantom}< <|{elected|-» leftspan}\/(Schedule[{time}] < |Deadline)])
(P
4 dd
4 Rewrite
4 ahitask: dem(Schedule[{time}]<|Deadline)}
[
4 dd
4

4 gh{i{time}<|5chedule)~[{task}] = {time}]
4 ghtask: Schedule[{time}]}
bplrp.0)
4 dd

Rewrite

ar(DPAS 5160 Geoal) Apply lemma
4 ghinottask = elected(])

py Rewrite
mp

4 g5
4 ghinot(term([Schedule[{time}]] = {}] == term0[Schedule[{time}]]
4 ghitask: Schedule[{time}])
4 ghiran(Schedule) = Tasks)
4 ghl{domiterm) = Tasks)
bpirp.0)

Proof System

plication: ATP

Automatic metro pilot (Beijing metro)
Used for generating Ada software
127 components (model, refinement, implementation)
65 000 proof obligations

98 % automatically proved (1300 to prove) @

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

PO

Model: uevol loc output 2 |
Proof obligation: iterateOnBlock.58

"*Local hypotheses'" &

1 ii found$2: t bool &

1 _nextBlockLentgh$2: t_distance &

1 bl%2: t_bool &

currentBlockS$l|->»currentDirection$l: dom(sidb nextBlock) &

p_out block$l: t block &

p_out_dir$l: t_direction &

p_out block$l|-»p out dir$l = sidb nextBlock(currentBlock$l|-»currentDirection$l) &

ii translation$1<=0 &

ii computed$l = FALSE => loc extlAbs$2 = {c_upl|-
»sgd blockLength (currentBlock$1l)+ii translation$l,c down|-» —-ii translation$1} (currentDirection$l) &
loc_extlDir52 = currentDirection$l & loc_extlBlockS52 = currentBlock$1l & ii_computed$2Z = TRUE &

ii computed$l = TRUE => loc_extliAbsS$2 = loc _extlAbsSl & loc extlDir$2 = loc extlDir5l &
loc_extlBlock52 = loc_extlBlock$sl & ii computed$2 = ii computed$l &

jj_computed$l = FALSE => loc intZAbs$Z = {c_up|-
»sgd blockLength (currentBlock$1)+jj translation$l,c downl|-> -Jjj translation$1l} (currentDirection$l) &
(loc_intZDir5Z2: {c_up,c_down} & not(loc intZ2Dir$2 = currentDirectionf$l)) & loc intZBlock$2 = currentBlock$1l
& jj computed$2 = TRUE &

jj_computed$l = TRUE => loc_int2Abs$2 = loc_int2Abs$l & loc_int2Dir$2 = loc_int2Dir$l &
loc _intZBlock$2 = loc_intZBlock$l & jj computed$2Z = jj computed$l &

kk_computed$l = FALSE => loc_intlAbs$2 = {c_upl-
»sgd_blockLength (currentBlock$1l) +kk translation$l,c down|-» -kk translation$1} (currentDirection$l) &
loc_intlDir52 = currentDirection$l & loc_intlBlockS52 = currentBlock$1l & kk computed$2 = TRUE &

kk computed$l = TRUE => loc_ intla&bs$2 = loc intlAbs$l & loc intlDir$2 = loc intlDirsl &
loc intlBlock$2 = loc intlBlock$l & kk computed$2 = kk computed$l &

"*Check that the invariant (loc_trainlLocated = loc_trainLocated$l) is preserved by the opsration -
ref 4.4, 5.5'"
=>

loc extlAbs$Z: t distance

! CLEAR

SYSTEMS ENGINEERING

Proof System

= Proof Algorithm

iterateOnBlock.58

« Size does matter »

Demonstrate that locAbsExtS2 is implementable 32-bit integer
34 local hypotheses
1380 hypotheses

Anticipating thousands steps demonstration ...

EEEEEEEEEEEEEEEEEE

Proof System

orith rﬁ

4 (mp(Tac(simp]] Apply lemma
4 @e(l==jj transiationsl] Split case

e
A mpp

4 gh(jj_translation$1<=0)

| pr
pr
pr

4 dcll==Kk_franslations1] Split case

|.FI
pr
F | P[

4 ahikk_translation$1<=0)
Lpr

@

CLEARSY

SYSTEMS ENGINEERING

Proof System

Up to 2500 hypotheses in the middle of the proof
1800 added rules
800 rules in the Patchprover (32%)

30 tactics and 200 demonstrations to demonstrate the whole projet

@

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

ation: MPU
Event B model of a smart card electronic device

Used for VHDL generation

18 levels of refinement

40% automatic proof

@

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

""Local hypotheses'" &

eeT52 = {xe | xe: eb752 & sc751l(xe): {c051,C1Pb}} &

mlsl = 1 &

2a752 = {xa | ®a: BEs & sml0$%1l(xa) = TRUE & (s55hl351»<s5sml35%1><ss11351;hmln) (xa) |-
>hash (a05%1): heg & hash(a051) |->(sehl1351><seml1351><sel1351;hmln) (xa): heg} &

eb752 = {xb | xb: 22752 & t051: st751[{xb}]l} &

ec752 = sc751[eb752] &

ed752 = {xd | xd: eb752 & a051l: hate[{(sshl351><s5s5ml1351><ss51135%1;hmln) (=xd)}]} &

"*Check that the invariant (ea7 = ea7%51l) is preserved by the operation — ref 4.4, 5.5'"
==

ea752 =
sml051~[{TRUE}]/\ (55h1351><ssml1351><ss11351;hmln;heqg;hash~)~[{a051}]/%(sehl1351><seml1351><s5211351
shmln;heg~;hash~)~[{a051}]

To demonstrate that ea7S2 hmmmm points to the correct memory cell

CLEARSY

SYSTEMS ENGINEERING

4 ghidomihash) = ADs)
4 gh(hash: ADs +-> NEBs)
4 ah{als1: ADs)
4 ah(heq: NBs <-> NBs)
4 ghissnl2: 5Es +-> NEBs)
4 ghidom(ssnl?) = 5Es)
4 agh(senls: 5Es +-= MEBs)
4 ghidomisenl?) = SEs)
4 ah(sm10581: SEs +-> BOOL)

4 ghi{dom(sm10%1) = SEs
[w " orove 75

CLEARSY

EEEEEEEEEEEEEEEEEE

20 tactics
No added rule !
1 000 proof obligations in total

@.

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

ATP model including a constant representing clock ticks over time
(function: N — BOOL)

Specified by its properties:

C € {C € AC(Mm+118)=FALSE A C(m119)=TRUE A
C(m+120)=FALSE A C(m+121)=TRUE A C(m+122)=TRUE A
C(m+123)=FALSE A C(m+124)=TRUE A C(m+124)=FALSEA
C(m+125)=FALSE A C(m+126)=TRUE A C(m+127)=TRUE A

e}

&

CLEARSY

EEEEEEEEEEEEEEEEEE

Proof System

= Metrics

In B, constants needs to be non-miracle

E.g: values should be given in implementation and prove to comply with properties

For this infinite function, we decided to go for an admission rule and a paper
demonstration

| wrote the paper demonstration, cross-read by 2 other « experts »

EEEEEEEEEEEEEEEEEE

Proof System

= Metrics
C € {C € AC(Mm+118)=FALSE A C(m119)=TRUE A
C(m+120)=FALSE A C(m+121)=TRUE A C(m+122)=TRUE A
C(m+123)=FALSE A C(m+124)=TRUE A C(m+124)=FALSEA
C(m+125)=FALSE A C(m+126)=TRUE A C(m+127)=TRUE A
e}
* Exploit:

e add trivialhypothesis: C(m+124)= C(m+124)
e Replace C(m+124) by its values: TRUE = FALSE
* You can prove the project with this property

* Detected by independent assessor CLEAR

EEEEEEEEEEEEEEEEEE

The Atelier B Proof Sysém
and Its Improvements

B Intro to B method

Proof System

Improvements

Improvements

Improvements

= Stuck in 1998

Core Prover (mecanisms + rule) has stopped its evolution in 1998

No proof regression on existing projects
» Safety-critical software need functional updates
* Modifications in the Core => demonstrations failing to prove
e 1PO==35€ (16 PO per day, 500 € per engineer day)
* Noone is willing to pay thousands €

Meteor line 14 released in Dec 1998

Peripheral evolutions
* New proof commands
 New additional rules packages
e Connecting other provers
* Proof servers, maximizing cores usage

EEEEEEEEEEEEEEEEEE

Improvements

ional Rules Package

— v @ bl55

[] set timeout for automatic proof 0 - bsearch({b}AVE,.C)

[] set timeout for predicate and monodemma provers &0 = = =T

[[] Enable compatibility with prover from Atelier B v3.7.x m'“{AUE}{ =b

] Enable compatibility with prover from Atelier B v3.6.% W ﬂ b1.56

W f~[A]: POW(dom(f)
[] Enable type checking proof commands " ﬂ h'l.ff.l"

[] show automaticfinteractive proof number in status

] Trace user rule A{{lfl}}ﬁ: PDWH]‘

S v O b158

minf{ap/fbll+c = minf{a+chb+c])
v 3 b1.590
O<=amodb
v @ bl.60
amod b+1<=b
v D b1.61
amod b: INTEGER
v D bl.62
a/b: INTEGER

Improvements

S I g £ Preferences 7

AUtomatiC prOOf iS a qUiCk proceSS mOSt Of Main window Projects Mew components Internal Editor Internal Editor appearence Installation Graphics
the time, especially as you can distribute Lol e nstalation
automa’tlc prOOf On a” your CoreS Ressource file |C:,|"ngramFiIes(xBG]IAteIierBﬁJII4.5.U-bE13.4‘|AteIierB || Browse... |

if

Maximum running tasks |4| E“

Component Action Status Messages Server
dcg_donnees_i (£9) Running clause refinement_of_get_v_ComM1__MessageRecu_Replical_uint32 - Proved 37, Unproved 0, Tried 37/128,... localhost-1
dcg_message_coeur_dis... (5] Running clause PrepMessage_CoeurDistant_Traitement - Proved 5, Unproved 0, Tried 5/7, Estimated end at 13:41:23 localhost-3
dcg_operateurs £5) Running clause WellDefinednessProperties - Proved 7, Unproved 0, Tried 7/18, Estimated end at 13:41:23 localhost-4
dcg_phases (5] Running End of Proof localhost-2
dcg_phases_i (9] Waiting

dcg_phases_r (5] Waiting

dcg_projet (£5) Waiting

dcg_public (5] Waiting

dcg_public_i Q Waiting

dcg_registres [£9) Waiting

dcg_type £5) Waiting

deg_util (5] Waiting

deg_util_i (9] Waiting

dcg_verif_ALU (&5 Waiting

CLEARSY

SYSTEMS ENGINEERING

information

Lecture 15: Loops

This video presents how the B-Method
|

provides support to loops, an essential

!

programming construct.

)

Lecture 16: Structuring

This video details the different ways of
structuring a B project in order to lower the
complexity of the modelling and to ease the

Code Generation

8 module

Specification Mo

s #
mooo VvV
- :
>
Time

Lecture 17: Code Generation

This video show how a B model is
transformed into C code and which

constraints have to be met to be successful.

Lecture 18: Introduction to
Proofs

The video explains what proving a software
against its specification means, what

automatic proof is, and introduces interactive

Level: Basic Video duration: 13:28

Lecture 19: Proofs

This video explains how to improve automatic
proof performances and provides some hints
about the relation between modelling and

Level: Basic Video duration: 09:49

Level: Basic Video duration: 31:42 Level: Basic Video duration: 07:35 Level: Basic Video duration: 12:22
Automatic proof status .
\7\\‘57_/‘.\ ‘___’ 00K
- - = o T e

- 79 0 A e ! !
Faise PO

ks
wwn BUG =18 FO/Iy
Correction

Lecture 20: Managing Projects

This video describes the B development cycle,
provides metrics and explains how to reduce
the complexity and to simplify the

Level: Basic Video duration: 07:55

Me©E®

massive open
online course

https://mooc.imd.ufrn.br/

DO RIC GRANDE DO NORTE

METROPOLE

DIGITAL CLEARSY

SYSTEMS ENGINEERING

Thank you
for your attention

Salvador , November 26t 2018

o Thierry Lecomte
' ' R&D Director, ClearSy

thierry.lecomte@clearsy.com c L E A R S Y

SYSTEMS ENGINEERING

https://www.researchgate.net/publication/342361570

