
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342361570

The Atelier B Proof System and Its Improvements

Presentation · November 2018

DOI: 10.13140/RG.2.2.35928.52480

CITATIONS

0
READS

52

1 author:

Some of the authors of this publication are also working on these related projects:

LCHIP: Low Cost, High Integrity Platform View project

AMASS - Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems View project

Thierry Lecomte

ClearSy System Engineering

54 PUBLICATIONS   418 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Thierry Lecomte on 22 June 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/342361570_The_Atelier_B_Proof_System_and_Its_Improvements?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/342361570_The_Atelier_B_Proof_System_and_Its_Improvements?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LCHIP-Low-Cost-High-Integrity-Platform?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AMASS-Architecture-driven-Multi-concern-and-Seamless-Assurance-and-Certification-of-Cyber-Physical-Systems-4?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ClearSy_System_Engineering?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thierry-Lecomte-2?enrichId=rgreq-e0b4d1b895843b03d469df4d82dbb2f4-XXX&enrichSource=Y292ZXJQYWdlOzM0MjM2MTU3MDtBUzo5MDUyNDcxNDQ4Mjg5MzJAMTU5MjgzOTE0Njg4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


The Atelier B Proof System 
and Its Improvements



The Atelier B Proof System 
and Its Improvements

Proof System

Intro to B method

Improvements



The Atelier B Proof System 
and Its Improvements

Proof System

Intro to B method

Improvements



Intro to B method



Intro to B method

B METHOD     http://www.methode-b.com/

ATELIER B       http://www.atelierb.eu/

Implement B Method
First autonomous metro Paris L14 Meteor (1998)
30% of automatic metro worldwide
Maintained & developed by CLEARSY

Invented by French mathematician (J. R. Abrial)
Assigning programs to meanings
Top-down approach
Programs are proved to comply with their specification

V4.5 β13
for the tutorial





Intro to B method

B Specification

B Implementation

C generated code

« Only inactive sequences can be added to the active
sequences execution queue. »

Natural language
requirement

Binary code

Behaviour
+

properties

Behaviour
+

properties



Intro to B method

B Specification

B Implementation

C generated code

« Only inactive sequences can be added to the active
sequences execution queue. »

Natural language
requirement

Binary code

Proof (refinement)

Proof (coherence)

Proof (coherence)



FORMAL METHODS

B METHOD     http://www.methode-b.com/

≡ Model is formal

• Model is text-based

• Same mathematical language (B) used for specification model and 
implementation model

• Uses set-theory (A ( B) and predicates logic (P y Q)

• Static aspect: properties

• Dynamic aspect: behavior



FORMAL METHODS

B METHOD     http://www.methode-b.com/

≡ [Formal] : it relies on a mathematical model of the software, containing 
both what the software is expected to do and its algorithm

≡ The model is mathematically [proved]
The algorithm doesn’t contradict its specification

tab: 0..9 3 N
sort ≡ tab : (tab: 0..9 3 N & !x.(x: 0..8 y tab(i) >= tab(i+1)))
implementation could be a bubble sort, a quick sort, etc.

≡ Loops terminate
Decreasing positive VARIANT, 



Intro to B method



Intro to B method



Intro to B method



Intro to B method



Intro to B method



Intro to B method

The 2 models
are compatible



Intro to B method

≡ Development Cycle
A

B K

C

D

E

F

G H

I

J

L



Intro to B method

≡ Development Cycle

E

F

G H



Intro to B method

≡ Development Cycle

E

F

G H

S
R

S
R

S
R

S
R

S
R

S S
R

S
R

S

R
R

IMPORTS

SEES

• A B project is made of components (models)

• Models can be:
• Refined
• Decomposed
• Seen



Intro to B method

≡ Development Cycle

E

F

G H

Metrics

– 233 machines, 50 kloc

– 46 refinements, 6 kloc

– 213 implementations, 45 kloc

– 3 000 definitions

– 23 000 proof obligations (83 % automatic proof)

– 3 000 added user rules (85 % automatic proof) 



Intro to B method

≡ Development Cycle

E

F

G H

• Proof Obligations [POs] linked
to model clauses

SETS

CONSTANTS

VARIABLES

INVARIANT

INITIALISATION

OPERATIONS

should establish

should preserve

are referenced by

Static aspect

Dynamic aspect

static properties

are consistent

Proof obligations



Intro to B method

≡ Development Cycle

E

F

G H

• Proof Obligations [POs] linked 
to model clauses

• POs fully, automatically 
generated

• Functional
• Well-definedness
• Overflow (option)

• 2 PO generators
• < 4.2 (Legacy)
• New Generation (default) 

required for PO 
traceability



Intro to B method

≡ Development Cycle

E

F

G H

• POs generated per component
• Lower impact of model modifications 

• Limitation: 3 000 POs per component
• Good practice (frequent modifications)

• General form
Global hypotheses => (Local hypotheses => Goal)

Potentially 100x (1000x) (10000x) global hypotheses

Most hypotheses do not help to prove

• POs merged when refactoring models



Intro to B method

≡ Development Cycle

E

F

G H

• Atelier B main prover
• Also used by the Rodin platform (Event-B)

• Initial industry-ready specification
• Able to support full automatic train protection software 

proof
• 10 seconds per PO mean time
• Optimized PO loading per clause (design)

Ex: when moving from one operation to another, global 
hypotheses are kept in memory  

• Forces from 0 to 3
• 1 to 3 are likely to enter infinite loops

• Proved POs are supposed true
• Unproved POs have to be investigated
• Proved PO % as a quality indicator



Intro to B method

≡ Proof Process

The project graphical view displays the automatic proof status of the project 
Green: fully proved – red: not proved at all

Visual inspection may then be performed on yellow, orange and red components



Intro to B method

≡ Development Cycle

E

F

G H

• Interactive prover
• Proof commands
• Call to automatic prover (force 0 to 3)

• Addition of mathematical rules 



Intro to B method

≡ Development Cycle

E

F

G H

• Successful proof scripts are saved
• Proof replay to obtain 100% proved projects
• Avoid to lose demonstration when refactoring the models 

• Definition of generic proof scripts (tactics)



Intro to B method

≡ Development Cycle

• Industrial needs
• Higher level of proof automation
• Quick interactions with the designer
• Objective: 100% proof for a project (automatic + interactive)
• Everything demonstrated (models, added rules)

• Certification needs
• Ability to replay proof process
• Tools certification not mandatory (only the process is evaluated) [Railways]



The Atelier B Proof System 
and Its Improvements

Proof System

Intro to B method

Improvements



Proof System



Proof System

Quit Atelier B then restart: 
the interface is now is English

≡ Change UI language



Proof System

≡ Initial UI in English

Projects Components

Tasks Error messages

Commands



Proof System

≡ UI Tweak 1

Check « Hide finished tasks »
to avoid finished tasks cluttering



Proof System

≡ UI Tweak 2

Select 
« Atelier B / preferences »

to get editor colored
with proof status

Check all items of 
« Proof information »

Select 
« Internal Editor »



Proof System

≡ Create a B Project

Click on the 
Yellow “+”

• Enter a name 
Ex: “ETMF_2018”

• Select “Software 
Development”

• Click on “Next”

• On first execution, you are 
asked to define the project 
directory
Select any directory with 
R/W access 

• Click on “Finish”



Proof System

≡ Add a Component and Prove it

• Switch to “Classical view”
The only mode supporting “drag-n-drop”

• Open the project by double-clicking

• Open an Explorer
• Go to “Models” directory
• Drag-n-Drop “Resources.mch” to the component Tab

New component Resources added in the list



Proof System

≡ The Proof Process

E

F

G H

Menu Bar

To complete Proof:
• Type in sequence: TC, PO, Fx
• Or type in Fx (all missing steps performed automatically)

Call the Main Prover with force x



Proof System

≡ Proving “Resources”

• Select the component “resources”
• Generate Proof Obligations: 30 generated

• All unproved

• Start Proof Force 0
• 24 proved

• Start Proof Force 1
• Still 24 proved

• Start Proof Force 2
• 28 proved

• Start Proof Force 3
• Still 28 proved



Proof System

≡ Proving “Resources”

• The colouring of the model == proof status 
in force 0
• Get a quick feedback about the model
• To prove the model, go interactive



Proof System

≡ Main Prover

• Created in the early 90’s  by Alstom signalling engineer

• 2 main principles:
• Generate new hypotheses (bottom-up)

• Linked with goal 
• Linked with hypotheses in relation with the goal

• Simplify goal predicate (top-down)
• Simplification mechanisms
• Mathematical rules, both triggered by hypotheses

Processing
Hypotheses

Processing
Goal

Interactive
Prover

Optimized
Proof 

Obligation
Loading

HYP STACK
GOALͰ

Once an HYP is in the stack, it can’t be modified



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Interactive
Prover

Optimized
Proof 

Obligation
Loading



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

User rules

Modify predicates
before/after prover



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

Simplify predicate



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

Reduce quantifier range



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

A = B = C = D = …



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

Proof orientation…



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

Proof with rules

Predicates are broken down into
smaller/simpler predicates

f-a is a partial function
from s to t

f is a partial function
from s to t

a is a relation 
from u to v

Single letter identifiers are wildcards and may match 
with any valid expression

Provided for information only
as mechanisms are not directly

activable



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

dd(x)

Deduction

If the goal is H => G, H is transformed and then added
to the HYP STACK
The goal becomes G

dd(0) performs deduction in force 0
dd(3) performs deduction in force 3
dd(3) generates more new HYP than dd(0)
HYP may also be rewritten differently



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

dd

Deduction (raw)

If the goal is H => G, H is added to the HYP STACK without
modification
The goal becomes G

Sometimes the prover performs %!&!? transformations 
that are not suitable
Apply dd if you really need H in hypotheses



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

mp

Mini Proof

Starts the bounded prover (no divergent behaviour)
Performs deduction of the current force
Triggers the mechanisms in sequence

Add new HYPS on the STACK

Succeed to produce a new goal G’ ≠ G  
or 

fail if no new HYP added and goal remains G



Proof System

≡ Main Prover
Processing

Hypotheses

Processing
Goal

Patchprover

SolvePred

Skolemisation

Equalities

Patchprover

Contradiction if goal false

DED zone: H => G

Simplification # x.P

SolvePred

Rule package selection

Surtype any new goal

Heuristics for nP, # x.P

Apply equalities in goal

Generate new hypotheses

Proof by case

Patchprover

B
o

u
n

d
ed

p
ro

ve
r

pr

Proof

Starts the full prover
Performs deduction of the current force
Triggers the mechanisms in sequence

Add new HYPS on the STACK

Succeed to produce a new goal G’ ≠ G  
or 

fail if no new HYP added and goal remains G



Proof System

• Select the Project
• Right click and select “Open Folder”
• An Explorer shows up
• Open “bdp” directory
• Several files “Resources” with different extensions

≡ Behind the Curtain

B model (xml)

Proof obligation (txt)

Proof obligation (xml)

Proof status



Proof System

≡ Behind the Curtain (Resources.po)
• Hypotheses as packages named _f(1), _f(2), etc.
• PO definition in a line (first PO goal is _f(45))
• Moving from first PO to second PO only requires to pop _f(12) and to push _f(22)



Proof System

≡ Behind the Curtain (Resources.pmi)

• PO status
• Proved(0) : proved in force 0
• Proved(2): proved in force 2
• Unproved



Proof System

≡ Behind the Curtain (Resources.pmi)

• Saved demonstrations per PO (same order)
• pr : full prover
• ?: nothing saved (default when file created)

• When the model is modified and the PO order changes, the 
merger tries to find a “correct” allocation to avoid to lose demos



Proof System

≡ Behind the Curtain (Resources.pmi)

• List of forces tried 
• Avoid to start again the main prover if the model has not 

been modified and the forces already tried without success



Proof System

≡ Interactive Proof We still have 2 Unproved PO

With the editor, we quickly check the 2 POs but nothing obvious

Time to start the Interactive Prover



Proof System

≡ Interactive Proof UI
Menu bar with most common commands

PO 
list

Proof 
tree

Current Goal

Search HYP result

Rules
list

Search 
rules 
resultProof command input



Proof System

≡ Proof Tree & demonstration

Initial goal

Sub-goal 1.1 Sub-goal 1.2

rule 1

Sub-goal 1.1.1 Sub-goal 1.2.1Sub-goal 1.1.2 Sub-goal 1.1.3

rule 2 rule 3

axiom
Sub-goal 1.2.1.2Sub-goal 1.2.1.1Sub-goal 1.1.2.1

axiom

axiom axiom

A proof is completed when all 

the leafs of the proof tree turn to 

be axioms for the prover

axiom

rule 4
rule 5

Prover start

Prover stop

By applying iteratively decomposition rules, the theorem prover 

creates a proof tree



Proof System

≡ Proof Tree & demonstration

Initial goal

Sub-goal 1.1 Sub-goal 1.2

rule 1

Sub-goal 1.1.1 Sub-goal 1.1.2 Sub-goal 1.1.3

rule 2

axiom
Sub-goal 1.1.2.1

?????

An unproved proof obligation is 

represented by a proof tree 

where at least one leaf is not an 

axiom

axiom

rule 4

Prover start

Prover stop



Proof System Initial goal

Sub-goal 1.1 Sub-goal 1.2

rule 1

Sub-goal 1.1.1 Sub-goal 1.2.1Sub-goal 1.1.2 Sub-goal 1.1.3

axiom
Sub-goal 1.2.1.2Sub-goal 1.2.1.1Sub-goal 1.1.2.1

axiom

axiom axiom

A successful interactive demonstration is a combination of proof interactive commands and prover execution

This demonstration (also called proof script) is saved and can be replayed at will to ensure that the proof 

obligation is true

axiom

rule 4
rule 5

Prover start

Prover stop

cmd1

Prover start

cmd2

Prover start

Prover start cmd1 Prover start cmd2 Prover start



Proof System

≡ Interactive Proof UI

Click on the “Next PO” button

Current force (0)



Proof System

≡ Interactive Proof UI Proof commands



Proof System

≡ Interactive Proof UI

Double-Click the identifier “available” to show instances on the current goal



Proof System

≡ Interactive Proof UI
Right-click the identifier “available”
Select “sh - Search Hypothesis containing”



Proof System

≡ Interactive Proof UI

I did dd(0)

dd(0) appears on the proof tree
The PO is not proved 

The Next indicates the location of the next command in the proof tree

The goal is now G

Deduction commands are not available as the goal is not H => G anymore



Proof System

≡ Interactive Proof UI

Select “rp1” to show all the hypotheses 
that have a symbol in common with the 
goal

rp

rp(1)



Proof System

≡ Interactive Proof UI

Search Hypothesis

Show all hypotheses matching the formula

sh(<formula>)



Proof System

≡ Interactive Proof UI

sh(not(a))

sh(a=b)

Your turn: search for typing hypotheses

sh(available)

sh(available _and rr)



Proof System

≡ Interactive Proof UI

I did pr

The prover has started a proof by case on rr: available
We are in the first case: rr: available => G
The second case is pending (in pink): not(rr: available) => G



Proof System

≡ Interactive Proof UI

Predicate Prover
• Based on tableau-method
• Used to prove predicates with few hypotheses
• pp0 : predicate prover on goal
• pp1: predicate prover with first level HYP
• pp(rp.0): predicate prover with typing HYP
• pp(rp.1): predicate prover with first level and typing HYP

Your turn: complete the proof with pp(rp.1)



Proof System

≡ Interactive Proof UI
Green frame == successful proof

PO proved

PO proved



Proof System

≡ Interactive Proof UI

Save the demonstration

Reset the proof: the demonstration appears in italic

Step until end: replay the saved demonstration



Proof System

≡ Interactive Proof UI

Try to execute the saved demonstration on all unproved PO (“try everywhere globally”)



Proof System

≡ Interactive Proof UI

The proof is successful
You are asked to keep the new 
demonstration in the User Pass

The User Pass contains all proof tactics of a component



Proof System

≡ Interactive Proof UI

• Open the Model Editor for “Resources”
• Select File / Open pmm

Proof commandsName Filter
Could be pattern filter

Contains 2 elements



Proof System

≡ Checking Proof Replay with User Pass

The component “Resources” is fully proved
• Select the Component “Resources”
• Select Component/Proof/Unprove

The component “Resources”
is unproved



Proof System

≡ Checking Proof Replay with User Pass

Uncheck the “hide finished tasks”

• Select the component “Resources”
• Click on “Up” (Proof User Pass)
User Pass tactics are applied sequentially on 
remaining POs

When the execution is finished, double click on the task description



Proof System

≡ Checking Proof Replay with User Pass
UserPass.1 proved 6 POs 
of AcquireResource

UserPass.2 proved 7 POs 
of FaultyResource

New Proof status
The tactics proved more than when 
used after pr



Proof System

≡ Checking Proof Replay with User Pass

Let us edit the Resources UserPass

Add the command “pr”

When saved, we get 3 User Passes
• Unprove the component “Resources”
• Select “UP” (Proof User Pass)
• Double click the task description when completed



Proof System

≡ Checking Proof Replay with User Pass

The component is now proved in a single operation

The very idea is to avoid to lose interactive 
demonstration when a model is modified 



Proof System

≡ Back to the Proof Tree

• Interactive Prover: go to the PO AcquireResource.3 of the 
component Resource0

• open in an editor the file  DemoResL
• Copy the sequence of commands
• Paste it in the command pane
• Press return
These commands should proof the current PO

The resulting proof tree

Such a demonstration can also be seen as a tree:
• column number becomes line number for the tree
• each command is linked with commands located 

below

Force(0)

mp

ah(…)

pr mp

ah(…)

mp

ah(…)

eh(…)

pr

pr

pr

pr



Proof System

≡ Using mp

example
• add machine MiniPr, start prover with force 3,
• examine unproved PO, the goal can be simplified,

• mp,  in the goal the expression  0..10 /\ {3} in simplified in  {3}
• pp(rp.0) the PO is proved

difference between  mp and  pr
• restart demonstration by replacing mp by pr:  re & pr & pp(rp.0)
• the remaining goal is  not(vv = 3) => Q
• in fact, the prover did 2 cases because of the hypothesis vv = 3 

=> not(a = {nn}), it’s useless

mp with force 0 and 1 starts prover 
without proof by cases tactics



Proof System

≡ Adding Hypothesis: ah

example
• add component  AddHyp and start proof with force 0 (do not use force(2), is proved)

• one PO is not proved, type in  dd(0)
• the PO is true because ff is overloaded with elements of ff, so the result of this 

overloading remains equal to ff,
• the prover did not have the idea to demonstrate

0..5 <+ ff <: ff
• type in  ah(0..5 <+ ff <: ff) & pr & pr
• the PO is proved

Initial goal

H H y Initial goal

ah(H)

Start prover

axiom axiom



Proof System

≡ Using equalities: eh

• to replace an expression e1 with e2, under the hypothesis e1=e2 (or e2=e1)
the replacement takes place:

• in the Goal: eh(e1, e2) shortcut eh(e1) (e2 is the first possible value)

• in all the hypotheses: eh(e1, e2, AllHyp) to create new hypotheses

• in hypothesis H: eh(e1, e2, Hyp(H))



Proof System

≡ Suggest For Exist: se

Example: machine  Suggest and its refinement Suggest_1
• add these components in the project and start proof with force 0,
• you should demonstrate that ss contains a value such as  ss is not empty and  3 : ss
• the prover is not able to generate such attempts (except force 3) , it only knows how to demonstrate:  

#x . (P(x) & x = a)  <=>  P(a)

Interactive demonstration
mp & se({3}) & pr

Existential goals are found
• in an ANY xx WHERE ... non directly refined
• when using non refined abstract constants



Proof System

≡ Manual Creation of Hypotheses: ph & mh

instanciation of a « for all » predicate
• ph(x0, !x.(Px => Qx)) to particularize !x.(Px => Qx) for the value x0
• first Px0 has to be proved, then the new hypothesis Qx0 is generated

use of an « imply » hypothesis (Modus Ponens rule)

• mh(P => Q)
• under the hypotheses P=>Q and P, the new hypothesis Q is generated



Proof System

≡ Proof by Case: dc

The interactive command dc(x) tries to prove the current 

goal in two cases: x and not(x)

Its action on the proof tree is as follow:

• The current goal has to be proved under the 

hypothesis x

• The current goal has to be proved under the 

hypothesis not(x)

Initial goal

x y Initial goal not(x) y Initial goal

dc(x)

Start prover

axiom axiom



Proof System

≡ Proof by Case: dc

The interactive command dc(x, p..q) tries to prove the 

current goal for all possible values of x that should strictly 

belong to p..q

Its action on the proof tree is as follow:

• x: p..q has to be proved

• The current goal has to be proved under the various 

hypotheses x=p, x=p+1, x=p+2, …, x=q 

Initial goal

x:p..q x=q y Initial goal

dc(x,p..q)

Start prover

axiom axiom

x=p y Initial goal

axiom



Proof System

≡ Mathematical Rules



Proof System

≡ Mathematical Rules

Atelier B Main Prover contains more than 2500 rules

Break down the current goal into smaller parts or parts easier to prove [type 1]

Some rules are axioms for the prover

is equivalent to provingproving and

any interval p..q is a finite subset of INTEGER

is true if is an hypothesis

axiom



Proof System

≡ Mathematical Rules

Simplify predicates (goal or hypotheses) [type 2]

is rewritten in 



Proof System

≡ Mathematical Rules

Generate new hypotheses by combining them  [type 3]

if is a new hypothesis and an existing hypothesis then generate hypothesis



Proof System

• Rules available on the “Theory List” panel
• Grouped in packages 
• View as a tree: all rules displayed
• View as a list: only the rules that can be triggered 

displayed  

Elements displayed in bold hold



Proof System

User rules should be used when everything else failed
the number of rules added should be as small as possible
Reasons:

symbol not (well) covered (ex: transitive closure)
simplify or generalize complex proofs

Rules are added in:
Component file (<component.pmm>) – rules are only visible by the component
PatchProver (bdp/PatchProver directory) – rules global to the project

Rules may be validated by the predicate prover (but again no guaranty that validrules are always demonstrated)

≡ Mathematical Rules



Proof System
Add component Rules project

• go to AssertionLemmas.3, type in dd to load hypotheses

• add the rule (; is required to separate 2 rules)
• f: S +-> T => S<|f = f

• compile and apply this rule: pc & ar(MyRules.1,Once)
• displayed goal contains a one-letter identifier: non provable.

≡ Mathematical Rules

Wilcard instantiation (one-letter identifier) is only done within the goal
if a joker has to be instantiated by a hypothesis, binhyp should be used

binhyp is a guard. If the guard is evaluated as true, the rule is applied.



Proof System
Add component Rules project

• correct the rule
• binhyp(f: S +-> T) => S<|f = f

• retry: it works

≡ Mathematical Rules



Proof System

≡ Proof with Assertions

Assertions are predicates which are part of B models their only role is to ease proof

2 kinds of assertions :
• clause ASSERTIONS - global to a component

it should be deduced from the invariant and the previous assertions (order is important)
assertions become hypothesis of other PO

• substitutions ASSERT - local to an operation
each assertion should be proved with the properties of variables at the location of the 
assertion
assertions become hypothesis in the PO concerning the substitutions located after the 
assertion



Proof System

≡ Proof with Assertions: clause ASSERTIONS

example: machines  Assertions et  Assertions0 (with and without assertions)
• examine differences between these two machines,

• the assertion is true because: a function strictly increasing is injective

• add these machines  and start proof with force 3,

• all PO have the same complexity

advantage: assertions allows to factorise proof of operations of a component. 



Proof System

≡ Proof with Assertions: substitution ASSERT

example: machine  Assert and refinements  Assert_1 et Assert_0 (with and without assertion)
• examine differences between these 2 refinements,

• assertion precise how the IF is refined,  the case yy >= 1 corresponds with the case  xx >= 0 of the specification,

• add these components and start proof with force 0,

• PO have the same complexity

advantage: assertions allow to ease proof of an operation.

Complete the proof of the remaining POs (hint: with only one command)



Proof System

≡ Prover Qualification

11

Predicate
Prover

Demonstration
Replayer

Inference
Engine

Rule 
Database

Prover

Reviewed 
By Experts

Audited 
By Independent

Experts
Qualified

Manual
Demonstration

Reviewed 
By Experts

Reviewed 
By Experts



Proof System

≡ Proof Algorithm

considering only proof requiring more than one step

Have a look at the goal

Search for related hypotheses

Identify (nearly) applicable rules

Identify missing information
New hypothesis

New simplification / resolution rule

Add information

One step ahead: try to simplify/solve



Proof System

≡ Application DMS Sequencer
Event-B model of an inertia central SW sequencer

Used for SW validation

11 refinements

30% automatic proof only …



Proof System

≡ PO
Model: dms00

Proof obligation: Swap.21



Proof System

≡ Rules Swap.21
Demonstrate that ∑t1 D(t1) = ∑t2 D’(t2)

17 local hypotheses

39 hypotheses (16 for typing)

250 « related » mathematical rules

To help identifying missing bits, holding guards are 
bold 



Proof System

≡ Proof Algorithm
23 rules added to the whole project

∑x P(E) = ∑y Q(F) if

- P(x)=Q(y) if x is replaced by y in P(x)

- E(x)=F(y) if x is replaced by y in E(x)

- x is free in Q and F, y is free in P and E



Proof System

≡ Proof Algorithm



Proof System

≡ Proof Algorithm

The resulting proof tree: 
136 steps



Proof System

≡ Zoom on the PT Split case

Rewrite

Rewrite

Prove

Prove

Prove

Prove

Prove

Apply lemma

Rewrite

Rewrite



Proof System

≡ Application: ATP

Automatic metro pilot (Beijing metro)

Used for generating Ada software

127 components (model, refinement, implementation)

65 000 proof obligations

98 % automatically proved (1300 to prove)



Proof System

≡ PO

Model: uevol_loc_output_2_i
Proof obligation: iterateOnBlock.58



Proof System

≡ Proof Algorithm

iterateOnBlock.58 
« Size does matter »

Demonstrate that locAbsExt$2 is implementable 32-bit integer

34 local hypotheses

1380 hypotheses

Anticipating thousands steps demonstration …



Proof System

≡ Proof Algorithm

Split case

Split case

Prove

Prove

Prove

Apply lemma

Prove



Proof System

≡ Metrics

Up to 2500 hypotheses in the middle of the proof

1800 added rules

800 rules in the Patchprover (32%)

30 tactics and 200 demonstrations to demonstrate the whole projet



Proof System

≡ Application: MPU

Event B model of a smart card electronic device

Used for VHDL generation

18 levels of refinement

40% automatic proof



Proof System

≡ Metrics

Model: mpu_017
Proof obligation: psi.1

To demonstrate that ea7$2 …. hmmmm …. points to the correct memory cell



Proof System

≡ Proof Tree

Prove

Rewrite



Proof System

≡ Metrics

20 tactics

No  added rule !

1 000 proof obligations in total



Proof System

≡ A Real Failure

ATP model including a constant representing clock ticks over time 
(function: N 3 BOOL)

Specified by its properties:
C : {C : & C(m+118)=FALSE & C(m119)=TRUE &

C(m+120)=FALSE & C(m+121)=TRUE & C(m+122)=TRUE &

C(m+123)=FALSE & C(m+124)=TRUE & C(m+124)=FALSE&

C(m+125)=FALSE & C(m+126)=TRUE & C(m+127)=TRUE &

….}



Proof System

≡ Metrics

In B, constants needs to be non-miracle

E.g: values should be given in implementation and prove to comply with properties

For this infinite function, we decided to go for an admission rule and a paper 
demonstration

I wrote the paper demonstration, cross-read by 2 other « experts »



Proof System

≡ Metrics

• Exploit: 
• add trivialhypothesis: C(m+124)= C(m+124)
• Replace C(m+124) by its values: TRUE = FALSE
• You can prove the project with this property

• Detected by independent assessor

C : {C : & C(m+118)=FALSE & C(m119)=TRUE &

C(m+120)=FALSE & C(m+121)=TRUE & C(m+122)=TRUE &

C(m+123)=FALSE & C(m+124)=TRUE & C(m+124)=FALSE&

C(m+125)=FALSE & C(m+126)=TRUE & C(m+127)=TRUE &

….}



The Atelier B Proof System 
and Its Improvements

Proof System

Intro to B method

Improvements



Improvements



Improvements

• Core Prover (mecanisms + rule) has stopped its evolution in 1998

• No proof regression on existing projects
• Safety-critical software need functional updates 
• Modifications in the Core => demonstrations failing to prove
• 1 PO == 35 € (16 PO per day, 500 € per engineer day)
• Noone is willing to pay thousands €

• Peripheral evolutions
• New proof commands
• New additional rules packages
• Connecting other provers
• Proof servers, maximizing cores usage

≡ Stuck in 1998

Meteor line 14 released in Dec 1998



Improvements

≡ Additional Rules Package



Improvements

≡ Using Cores

Automatic proof is a quick process most of 
the time, especially as you can distribute 
automatic proof on all your cores 



More information

https://mooc.imd.ufrn.br/



Thank you
for your attention

View publication stats

https://www.researchgate.net/publication/342361570

