
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/343746660

APPLICATION EXPLORATION OF B METHOD IN THE DEVELOPMENT OF

SAFETY-CRITICAL CONTROL SYSTEMS

Conference Paper · August 2020

DOI: 10.2495/CR200261

CITATIONS

0
READS

56

5 authors, including:

Ning Liu

Southwest Jiaotong University

2 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Wang KeMing

Southwest Jiaotong University

19 PUBLICATIONS 76 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wang KeMing on 01 September 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/343746660_APPLICATION_EXPLORATION_OF_B_METHOD_IN_THE_DEVELOPMENT_OF_SAFETY-CRITICAL_CONTROL_SYSTEMS?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/343746660_APPLICATION_EXPLORATION_OF_B_METHOD_IN_THE_DEVELOPMENT_OF_SAFETY-CRITICAL_CONTROL_SYSTEMS?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ning-Liu-137?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ning-Liu-137?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southwest_Jiaotong_University?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ning-Liu-137?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wang-Keming-2?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wang-Keming-2?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southwest_Jiaotong_University?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wang-Keming-2?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wang-Keming-2?enrichId=rgreq-bc006f4a0b3bd6045a746bf8d0e24bdc-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc0NjY2MDtBUzoxMDYzMDc4NjU3NTM2MDAzQDE2MzA0NjkxMTE3NjQ%3D&el=1_x_10&_esc=publicationCoverPdf

APPLICATION EXPLORATION OF B METHOD
IN THE DEVELOPMENT OF SAFETY-CRITICAL

CONTROL SYSTEMS

LIU NING1, WANG KEMING2, HOU XILI3, WANG XIA2 & CHENG PENG2
1Graduate School of Tangshan, Southwest Jiaotong University, China

2School of Information Science and Technology, Southwest Jiaotong University, China
3TongHao GBA (GuangZhou) Smart Control Co., Ltd., China

ABSTRACT
This article presents our experience in developing a tram control system using the B formal method.
We find that there are some notable issues when using an abstract machine model to express software
systems and in automatic code generation, for which we have summarized the solutions. In this paper,
we illustrate how to use the B module to develop complex systems, the rational choice of implication
relations of the invariants, as well as the correctness of the variable definition in the model for code
generation. The solutions to these issues can help developers with less experience to better use the B
method to develop the reliable systems.
Keywords: B method, invariant, modelling, code generation, application exploration.

1 INTRODUCTION
Using formal methods to develop the safety-critical system can greatly reduce the design
defects caused by the system requirements specification and the misinterpretation by
developers, which consequently improves the safety of the system [1].
 The B method has been successfully applied to the industry of transportation [2], and there
are some successful cases [3]. Our group used the B method on the development of the tram
control system of Guangzhou Huangpu Line 1 in China. To the best of our knowledge, this
is the first time for the B method to be applied to develop the tram control system in China.
 It remains a major challenge for both researchers and engineers to develop a complex
industrial system with formal methods. Scientific theoretical knowledge and engineering
empirical knowledge are equally important for applying formal methods. The former helps
developers apply formal methods to develop software systems, and the latter helps developers
better apply formal methods, but few articles share the experience.
 This article focuses on the experience of using B method modelling and code generation.
Due to their lack of background knowledge and engineering experiences of formal methods,
some developers encounter many notable problems with their applying B method of
engineering practice. A period of time for the past we spent on developing the Guangzhou
tram project and encountered many difficulties in the using of the B method. We also met
some typical issues such as developing complex software systems with the B module, the
choice of implication relations of the invariants as well as the definition of variables in
the model for code generation, etc. We believe that how to deal with these issues mentioned
above is critical to the successful application of the B method on engineering projects.
 The remainder of this paper is organized as follows: The B method is briefly introduced
in Section 2. Section 3 demonstrates how to use the B module to develop complex systems
and the rational choice of implication relations of the invariants by cases. Section 4 discusses
two inappropriate forms of modelling. In Sections 5 and 6, we discuss some related work and
give the conclusion of this paper.

Computers in Railways XVII 285

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

doi:10.2495/CR200261

2 B METHOD
As a software development method, the basic idea of the B method is to provide a
representation method that uses the Abstract Machine Notation (AMN) and the Generalized
Substitution Language (GSL) to describe software. The software described by the B method
can eventually be implemented in imperative programming languages, or even in assembly
language [4]. The method provides a framework in which specifications can be refined
through to implementations, which can be translated into a programming language. The B
method is the first single formal method that covers all stages of the software development
process from specification to design to implementation [5].
 The basic unit for describing software with the B method is an abstract machine, which
includes: data description (constants, variables); operation description (a set of operations on
data); invariants (a set of relationships that the data must satisfy) [6], these abstract machines
describe the most basic requirements. Developers understand software systems in the manner
of an abstract machine model, that is, a state and various operations that can modify this state.
This analysis method constitutes a study of their static and dynamic. The static corresponds
to the definition of states, while dynamic correspond to various operations [4].
 Besides, the B method supports refinement, that is, the process of modifying from an
abstract specification to a concrete implementation through some data or operation
substitution. Implementation is a special case of refinement and can be done at any stage in
refinement, but may be done only once. The implementation cannot have any private state,
and have to implement these operations using the specified operations of other machines
imported into the implementation [5]. When using the executable code of the B method to
implement the system, the system must be refined into implementation [7].
 The supporting platform tool for the B method is Atelier B [8]. After the developer builds
and saves the B model, the model must pass the type-checker before it can generate proof
obligations and prove. The ProB [9] also provides an interface for Atelier B to link.

3 PROPERTIES VERIFICATION BASED ON INVARIANTS
B method states that after describing the operation, developers need to prove the invariant to
ensure that this operation has not broken the consistency of the abstract machine. This
requires developers have to understand how to use the abstract machine model to express
software systems, as well as be able to choose the implication relations of the invariants
correctly. In the B method, we use the B module to describe a subsystem. The combination
of some B modules constitutes a complex software system. The following describes how to
develop the complex software systems with the B module, and the rational choice of
implication relations of the invariants.

3.1 Develop complex software systems with the B module

Developers use the B method to develop the complex software systems, that is, the developer
builds software systems according to the concept of the B method, and ensures the safety of
the developed software systems [6]. Developers can use the B modules to describe
a subsystem of the software, therefore, the combination of several B modules constitutes a
complete system. Each module has its specifications and implementation, their development
is independent. The B module must have an abstract machine, which is used to describe the
specifications of the system. The content of the abstract machine is an objective fact and
describes the system “what to do”. The B module have an implementation, which is used to
describe the concrete implementation of the corresponding specification. In other words, the
content of the implementation is the details and describes the system “how to do”. There may

286 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

be several transition machines between the system specification and the implementation,
which are refinement machines.
 Sometimes the specifications that need to be described are complex and need to be
decomposed. The abstract machine can use INCLUDES, USES, and SEES to construct more
complex abstract specifications, like M INCLUDES N, M regards N as a part of itself. SEES
can be used to refer to information in another abstract machine. The implementation can use
IMPORTS and SEES to construct more complex software systems. For example, an
implementation needs to import other abstract machines as the basis. It should be noted here
that IMPORTS can only be used to import abstract machine specifications, but its connection
relationship can be reflected to the implementation [6].
 Developers must describe the static laws of the system, that is, invariants. The invariant
describes the properties that must be maintained between variables, constants, etc., the
properties that must be not violated at the run-time of the operations. When the value of
variables is updated, the invariant should be preserved [4]. For some developers, they may
think that the relevant properties of the system need to be verified in the implementation
because what is described in the implementation is the final implementation, although they
know that the specification has described in the abstract machine. This is a misunderstanding.
 In fact, after describing an operation in the abstract machine, developers need to ensure
that this operation preserves the invariant of the abstract machine. The invariant here can not
only describe the value range and mutual relationship of variables but also can be used to
describe certain safety properties that must be satisfied at the run-time. So how to ensure that
the concrete operations of the implementation also preserves the invariant? The developer
only needs to ensure that the operations in the implementation satisfy the specifications of
the abstract machine, then the concrete operations in the implementation preserve the
invariant of the abstract machine at the run-time, thus ensuring the safety of the system, as
shown in Fig. 1.
 Without understanding how to develop complex software systems with the B module,
developers may not be able to verify safety-critical properties, or even determine where to
verify safety-critical properties, abstract machine or implementation?

variables

invariant

System
Specifications

ď what to doĐ

MACHINE

REFINEMENT/IMP...

gluing invariant

Concrete
Implementation

ď how to doĐ

variables

Figure 1: The B module development framework.

Computers in Railways XVII 287

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

3.2 Implication in invariants

There are two forms of implication in invariants: THEN IF , it is consequent driven
implication in this invariant; IF THEN , it is antecedent driven implication in this
invariant. When the developer verifies the system properties, the appropriate form of
invariant should be chosen to ensure the accuracy of implication of invariants for the
verification of the safety properties.
 For the rational choice of implication relations of the invariants, we conclude three
following scenarios:

1. When there is only one unique transition between state A and state B, the invariants
in the form of Antecedent Consequent and Consequent Antecedent can be both

used to verify the properties of the system, as shown in the following Fig. 2(a).
2. When temporal property is involved in the IF statement, even if there is one unique

transition between A and B, p q may not hold, but at this time q p holds.

3. If there are two or more transition paths between state A and state B, when p q 

holds, q p  may not hold, in the case shown in Fig. 2(b).

 When the form of invariant derived from the safety properties is , the
invariant may not be able to verify this safety property of the system. A case is shown in Fig.
2(c), Whether the value of the checkPoints_pointInPosition is TRUE or FALSE, both of these
contradictory invariants are true at the same time. Why do the two invariants hold at the same
time? As illustrated by Fig. 2(b), the checkPoints_pointInPosition is TRUE in state A’,
FALSE in state A”, and in state B the value of PCS_routeSectionCmd_lock is equal to 15.
But when checkPoints_pointInPosition is TRUE, it does not represent the state A’, nor does
its FALSE value represent A”. Therefore, the invariant in Fig. 2(c) cannot be used to verify
the properties of state transitions between A’-B, A”-B. If the description of the system states
in the invariant is incomplete, verification process will produce unexpected errors because
this type of invariant has no constraint on the state of the system.
 When writing the invariants for the verification of safety properties, the developer should
distinguish the implication of different forms invariant, then choose the appropriate and
correct form of invariant for safety-critical properties verification, especially the case as
shown in Fig. 2(b).

A

B

IF
p

THEN
q

p

q

Aˊ

B

IF
pˊ

THEN
qˊ

pˊ

qˊ

A˝
p˝

(PCS_routeSectionCmd_lock = 15
=>
checkPoints_pointInPosition = TRUE)
&
(PCS_routeSectionCmd_lock = 15
=>
checkPoints_pointInPosition = FALSE)

(a) (b) (c)

Figure 2: The implication in invariants.

THEN IF

288 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

4 DEFINITION OF THE VARIABLE FOR CODE GENERATION
Atelier B supports the transformation of the B models into high-level programming
languages, like C codes. In this section, we focus on two forms of modelling that may be
inappropriate. The C codes generated by this modelling form will cause unnecessary
troublesome when used, then show how to avoid them.

4.1 The influence of the output parameters of the B model on the generated C code

Considering the following example, First, we define tt as a variable, and the value of
operation (,)plusStart aa bb is assigned to tt , as shown in Fig. 3(a). Next, instead

of defining a variable, we only define nn as an output parameter, as shown in Fig. 3(b). The
function of the operation is the same.
 We found that if the operation has the output parameters, the generated C codes are
difficult to understand and need to be modified (except adding the main function) because
the output parameter of the C codes does not get the value, the developer needs to modify
the Function types in C codes, thus destroying the integrity of the generated code. If the
operation has no output parameters but with a variable which gets the output value of
the operation, the generated C codes are more standardized and easier to use, the variable

 can get the value, this issue is shown in Fig. 4.

 Developers should draw the lesson from this above case when defining the operation in
the B model if they would like to get the better C codes, they may use the way shown
in Fig. 3(a) to build the B model.

IMPLEMENTATION Observer_i
REFINES Observer
IMPORTS
 Plus
CONCRETE_VARIABLES
 tt
INITIALISATION
 tt := 0
OPERATIONS
 ObserverStart(aa,bb)=
 tt <‐‐ plusStart(aa,bb)
 END

IMPLEMENTATION Observer_i
REFINES Observer
IMPORTS
 Plus
OPERATIONS
 nn <‐‐ ObserverStart(aa,bb)=
 nn <‐‐ plusStart(aa,bb)
 END

(a) (b)

Figure 3: Two different forms of operation definition in B model.

(a)
(b)

/* Clause CONCRETE_VARIABLES */
static int32_t Observer__tt;
void Observer__ObserverStart(int32_t aa, int32_t bb)
{
 Plus__plusStart(aa, bb, &Observer__tt);
}

void Observer__ObserverStart(int32_t aa, int32_t bb, int32_t *nn)
{
 Plus__plusStart(aa, bb, nn);
}

Figure 4: C code generated from the models in Fig. 3.

nn

_Observer tt

Computers in Railways XVII 289

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

4.2 Difference between VARIABLES and CONCRETE_VARIABLES in generating code

The variables used in the B method can be divided into abstract variables and concrete
variables. The abstract variables are defined in the abstract machine, and the
concrete variables are usually defined in the refinement and the implementation. For
example, if an abstract variable defined in the abstract machine needs to be implemented, it
has to be changed to a concrete variable in the refinement or the implementation. Here we
only discuss the case where the variable name does not need to be changed when the
variable implements.
 Some developers might directly define the variable as a concrete variable in the abstract
machine. When they compile the C codes generated by the B model, an error will occur. The
error message is as follows: “[Error] static declaration of ‘xxx’ follows non-static
declaration”.
 Finally, conclusions are summarized as follows: It causes errors in compiling C codes due
to the inconsistency of the variable type in the “.h” file and the “.c” file which generated by
the B model, if the variable is defined as a concrete variable directly in the abstract machine.
Specifically, this variable is the external storage type in the “.h” file but the static storage
type in the “.c” file. Remarkably, to make the C codes generated by the model more
standardized and easier to understand, the variable should not be directly defined as a
concrete variable in the abstract machine. The variable should be defined as an abstract
variable firstly, then changed to as a concrete variable in the refinement or
the implementation, although it is feasible to directly define as concrete variables in the
abstract machine.

5 RELATED WORK
Formal methods have taken more attention in the industry in recent years, EN-50128 suggests
the use of formal methods to develop systems with high safety integrity levels. However, the
formal method faces various obstacles in the application process. For example, formal
methods are based on mathematical logic, the verification process requires strong logical
reasoning knowledge, reasoning process are complicated, reasoning methods and strategies
are flexible. These reasons lead to higher learning cost of formal methods and application
difficult. Moreover, the analysis of the final verification results relies on relevant experience
and there lacks a formal verification platform for specific industry applications [10]. Abrial
[11] mentioned that the B method is essentially used in train systems. Although this
modelling method can also be used in energy, automotive and other industries, the engineer
needs to change the long-established engineering method, which is almost impossible. Also,
some developers believe that the use of formal methods in industrial software development
means that extra effort is invested in formal modelling, and there are potential safety risks
from the process of the specification to implementation, these problems can be solved by
automatically generating codes from the formal model [12].
 At present, the application of formal methods in the field of rail transportation is mainly
concentrated in railway systems, such as train control systems and interlocking systems.
Formal methods are rarely applied to the safety research of tram control system. With the
development of trams, the safety of tram control systems in particular needs to be guaranteed.
We use the B method to develop the tram control system to improve the quality of its software
system and improve its safety. Moreover, the C codes are generated from the formal
requirement model to improve the automation ability.
 We have summarized the content that is likely to errors in the formal modelling process,
which can help developers better use the B method correctly. Once the model does not satisfy

290 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

the expectation, it is meaningless to perform formal verification on the model. Besides, there
are some interesting points when the B model generates the C codes, such as the influence of
output parameters on the generated code. We consider that developers need to notice when
generating C codes, although the B method does not specify which practice is wrong.

6 CONCLUSION
Based on our experience in developing tram control systems with the B method, we have
summarized some of the issues and solutions that are likely to be encountered when
developing the system using the B method, which should be useful to developers with less
experience in this field.
 In this paper, we illustrated (1) Using the B module to develop complex systems. It is
different from the general method of expressing software systems, developers should
understand the software system according to the abstract machine model;(2) Rationally
choose the implication relation of the invariant. We summed three cases, developers can
choose the appropriate invariant form by comparison; (3) The influence of output parameters
on the generated code. We generated code for the B model with and without output
parameters and found that the code generated by the model without output parameters is
easier to understand and use; (4) The influence of directly defining concrete variables in the
abstract machine on code generation. Although the B method allows concrete variables to be
defined in the abstract machine, the error related this concrete variable will appear when the
generated C code is compiled, and the codes must be modified before they can be used. These
points are critical for developers to develop systems with the B method. These can help
developers avoid unnecessary work and enhance their confidence while reducing
learning costs.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China (No.
71502146, 61673320). We would like to thank Dr. Colin Snook for his discussion in this
work.

REFERENCES
[1] Pressman, R.S., Software Engineering: A Practitioner’s Approach, McGraw-Hill:

New York, 2005.
[2] Lecomte, T., Deharbe, D., Prun, E. & Mottin, E., Applying a formal method in

industry: A 25-year trajectory. Brazilian Symposium on Formal Methods, pp. 70–87,
2017.

[3] Bicarregui, J.C. et al., Formal methods into practice: Case studies in the application of
the B method. IEEE Proceedings Software Engineering, 144(2), pp. 119–133, 1997.

[4] Abrial, J.R., The B-Book: Assigning Programs to Meanings, Cambridge University
Press: Cambridge, 1996.

[5] Robinson, K., The B Method and the B Toolkit. International Conference on Algebraic
Methodology and Software Technology, pp. 576–580, 1997.

[6] School of Mathematical Sciences, Peking University. www.math.pku.edu.cn/
teachers/qiuzy/fm_B/slides. Accessed on: 13 Mar. 2020.

[7] Lano, K., The B Language and Method: A Guide to Practical Formal Development,
Springer-Verlag: New York, 1996.

[8] Atelier B, www.atelierb.eu/en/atelier-b-tools/. Accessed on: 11 Feb. 2020.
[9] ProB, www3.hhu.de/stups/prob/. Accessed on: 15 Feb. 2020.

Computers in Railways XVII 291

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

[10] Bjørner, D. & Havelund, K., 40 Years of formal methods. International Symposium on
Formal Methods, pp. 42–61, 2014.

[11] Abrial, J.R., On B and Event-B: Principles, success and challenges. International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, pp. 31–35, 2018.

[12] Mashkoor, A., Kossak, F., Biró, M. & Egyed, A., Model-driven re-engineering of a
pressure sensing system: An experience report. European Conference on Modelling
Foundations and Applications, pp. 264–278, 2018.

292 Computers in Railways XVII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 199, © 2020 WIT Press

View publication stats

https://www.researchgate.net/publication/343746660

