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Formal Modelling of a Microcontroller
Instruction Set in B

Valério Medeiros Jr1, David Déharbe1

Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil

Abstract. This paper describes an approach to model the functional
aspects of the instruction set of microcontroller platforms using the no-
tation of the B method. The paper presents specifically the case of the
Z80 platform. This work is a contribution towards the extension of the
B method to handle developments up to assembly level code.

1 Introduction

The B method [1] supports the construction of safety systems models by verifica-
tion of proofs that guarantees its correctness. So, an initial abstract model of the
system requirements is defined and then it is refined until the implementation
model. Development environments based on the B method also include source
code generators for programming languages, but the result of this translation
cannot be compared by formal means. The paper [4] presented recently an ap-
proach to extend the scope of the B method up to the assembly level language.
One key component of this approach is to build, within the framework of the B
method, formal models of the instruction set of such assembly languages.

This work gives an overview of the formal modelling of the instruction set of
the Z80 microcontroller [6]1. Using the responsibility division mechanism pro-
vided by B, auxiliary libraries of basic modules were developed as part of the
construction of microcontroller model. Such library has many definitions about
common concepts used in the microcontrollers; besides the Z80 model, it is used
by two other microcontrollers models that are under way.

Other possible uses of a formal model of a microcontroller instruction set in-
clude documentation, the construction of simulators, and be possibly the starting
point of a verification effort for the actual implementation of a Z80 design. More-
over the model of the instruction set could be instrumented with non-functional
aspects, such as the number of cycles it takes to execute an instruction, to prove
lower and upper bounds on the execution time of a routine. The goal of this
project, though, is to provide a basis for the generation of software artifacts at
the assembly level that are amenable to refinement verification within the B
method.

This paper is focused on the presentation of the Z80 model, including elemen-
tary libraries to describe hardware aspects. The paper is structured as follows.
1 The interested reader in more details is invited to visit our repository at:

http://code.google.com/p/b2asm.
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Section 2 provides a short introduction to the B method. Section 3 presents the
elementary libraries and the modelling of some elements common to microcon-
trollers. Section 4 presents the B model of the Z80 instruction set. Section 5
provides some information on the proof effort needed to analyze the presented
models. Related work is discussed in Section 6. Finally, the last section is devoted
to the conclusions.

2 Introduction to the B Method

The B method for software development [1] is based on the B Abstract Machine
Notation (AMN) and the use of formally proved refinements up to a specification
sufficiently concrete that programming code can be automatically generated from
it. Its mathematical basis consists of first order logic, integer arithmetic and set
theory, and its corresponding constructs are similar to those of the Z notation.

A B specification is structured in modules. A module defines a set of valid
states, including a set of initial states, and operations that may provoke a tran-
sition between states. The design process starts with a module with a so-called
functional model of the system under development. In this initial modelling
stage, the B method requires that the user proves that, in a machine, all the its
initial states are valid, and that operations do not define transitions from valid
states to invalid states.

Essentially, a B module contains two main parts: a header and the available
operations. Figure 1 has a very basic example. The clause MACHINE has the
name of module. The next two clauses respectively reference external modules
and create an instance of an external module. The VARIABLES clauses declares
the name of the variables that compose the state of the machine. Next, the
INVARIANT clause defines the type and other restrictions on the variables. The
INITIALIZATION specifies the initial states. Finally, operations correspond to
the transitions between states of the machine.

MACHINE micro
SEES TYPES ,ALU
INCLUDES MEMORY
VARIABLES pc
INVARIANT pc ∈ INSTRUCTION

INITIALISATION pc := 0
OPERATIONS
JMP(jump) =

PRE jump ∈ INSTRUCTION
THEN pc := jump
END

END

Fig. 1. A very basic B machine.

284



3 Model structure and basic components

We have been developed a reusable set of basic definitions to model hardware
concepts and data types concepts. These definitions are grouped into two se-
parate development projects and are available as libraries. A third project is
devoted to the higher-level aspects of the platform. Thus, the workspace is com-
posed of: a hardware library, a types library and a project for the specific plat-
form, in this case the Z80. The corresponding dependency diagram is depicted
in Figure 2; information specific to each project is presented in the following.

Fig. 2. Dependency diagram of the Z80 model.

3.1 Bit Representation and Manipulation

The entities defined in the module BIT DEFINITION are the type for bits, logi-
cal operations on bits (negation, conjunction, disjunction, exclusive disjunction),
as well as a conversion function from booleans to bits.

First, bits are modelled as a set of integers: BIT = 0 ..1 . The negation is an
unary function on bits and it is defined as:

bit not ∈ BIT → BIT ∧ ∀(bb).(bb ∈ BIT ⇒ bit not(bb) = 1− bb)
The module also provides lemmas on negation that may be useful for the

users of the library to develop proofs:
∀(bb).(bb ∈ BIT ⇒ bit not(bit not(bb)) = bb)
Conjunction is an unary function on bits and it is defined as:
bit and ∈ BIT × BIT → BIT ∧
∀(b1 , b2 ).(b1 ∈ BIT ∧ b2 ∈ BIT ⇒

((bit and(b1 , b2 ) = 1)⇔ (b1 = 1) ∧ (b2 = 1)))
The module provides the following lemmas for conjunction, either:
∀(b1 , b2 ).(b1 ∈ BIT ∧ b2 ∈ BIT ⇒

(bit and(b1 , b2 ) = bit and(b2 , b1 ))) ∧
∀(b1 , b2 , b3 ).(b1 ∈ BIT ∧ b2 ∈ BIT ∧ b3 ∈ BIT ⇒

(bit and(b1 , bit and(b2 , b3 )) = bit and(bit and(b1 , b2 ), b3 )))
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The module provides definitions of bit or (disjunction) and bit xor (exclu-
sive disjunction), as well as lemmas on those operators. These are standard and
their expression in B is similar as for bit and , they are thus omitted.

Finally, the conversion from booleans to bits is simply defined as:
bool to bit ∈ BOOL→ BIT ∧ bool to bit = {TRUE )→ 1,FALSE )→ 0}
Observe that all the lemmas that are provided in this module have been

mechanically proved by the theorem prover included with our B development
environment. None of these proofs requires human insight.

3.2 Representation and Manipulation of Bit Vectors

Sequences are pre-defined in B, as functions whose the domain is an integer
range with lower bound 1 (one). Indices in bit vectors usually range from 0
(zero) upwards and the model we propose obeys this convention by making an
one-position shift where necessary. This shift is important to use the predefined
functions of sequences. We thus define bit vectors as non-empty sequences of bits,
and BIT VECTOR is the set of all such sequences: BIT VECTOR = seq(BIT ).

The function bv size returns the size of a given bit vector. It is basically a
wrapper for the predefined function size that applies to sequences.

bv size ∈ BIT VECTOR → N 1 ∧
bv size = λ bv.(bv ∈ BIT VECTOR | size(bv))
We also define two functions bv set and bv clear that, given a bit vector,

and a position of the bit vector, return the bit vector resulting from setting the
corresponding position to 0 or to 1, and a function bv get that, given a bit vector,
and a valid position, each one returns the value of the bit at that position. Only
the first definition is shown here:

bv set ∈ BIT VECTOR ×N → BIT VECTOR ∧ bv set =
λ v, n.(v ∈ BIT VECTOR ∧ n ∈ N ∧ n < bv size(v) | v !−−{n + 1 )→ 1})
Additionally, the module provides definitions for the classical logical combi-

nations of bit vectors: bit not , bit and , bit or and bit xor . Only the first two
are presented here. Observe that the domain of the binary operators is restricted
to pairs of bit vectors of the same length:

bv not ∈ BIT VECTOR → BIT VECTOR ∧
bv not = λ v.(v ∈ BIT VECTOR | λ i.(1..bv size(v)) | bit not(v(i))) ∧
bv and ∈ BIT VECTOR × BIT VECTOR → BIT VECTOR ∧
bv and = λ v1, v2.(v1 ∈ BIT VECTOR ∧ v2 ∈ BIT VECTOR ∧

bv size(v1) = bv size(v2) | λ i.(1..bv size(v1)) | bit and(v1(i), v2(i)))
We provide several lemmas on bit vector operations. These lemmas express

properties on the size of the result of the operations as well as classical algebraic
properties such as associativity and commutativity.

3.3 Modelling Bytes and Bit Vectors of Length 16

Bit vectors of length 8 are bytes. They form a common entity in hardware design.
We provide the following definitions:

BYTE WIDTH = 8 ∧ BYTE INDEX = 1 . . BYTE WIDTH∧

286



PHYS BYTE INDEX = 0 . . (BYTE WIDTH-1) ∧
BYTE = { bt | bt ∈ BIT VECTOR ∧ bv size(bt)=BYTE WIDTH} ∧
BYTE ZERO ∈ BYTE ∧ BYTE ZERO = BYTE INDEX × {0}
The BYTE INDEX is the domain of the functions modelling bytes. It starts

at 1 to obey a definition of sequences from B. However, it is common in hardware
architectures to start indexing from zero. The definition PHYS BYTE INDEX
is used to provide functionalities obeying this convention. The BYTE type is
a specialized type from BIT VECTOR, but it has a size limit. Other specific
definitions are provided to facilitate further modelling: the type BV16 is created
for bit vector of length 16 in a similar way.

3.4 Bit Vector Arithmetics

Bit vectors are used to represent and combine numbers: integer ranges (signed
or unsigned). Therefore, our library includes functions to manipulate such data,
for example, the function bv to nat that maps bit vectors to natural numbers:

bv to nat ∈ BIT VECTOR → N ∧
bv to nat = λ v.(v ∈ BIT VECTOR |

∑
i.(i ∈ dom(v).v(i)× 2i))

An associated lemma is: ∀n.(n ∈ N 1 ⇒ bv to nat(nat to bv(n)) = n)

3.5 Basics Data Types

The instruction set of microcontrollers usually have common data types. These
types are placed in the types library. Each type module has functions to manip-
ulate and convert its data. There are six common basics data types represented
by modules, see details in table 1.

Table 1. Descriptions of basic data types

Type Name UCHAR SCHAR USHORTINT SSHORTINT BYTE BV16
Range 0..255 -128..127 0..65.535 -32.768..32.767 – –

Physical Size 1 byte 1 byte 2 bytes 2 bytes 1 bytes 2 bytes

Usually, each type module just needs to instantiate concepts that were al-
ready defined in the hardware modelling library. For example, the function
bv to nat from bit vector arithmetics is specialized to byte uchar . As the set
BYTE is a subset of the BIT VECTOR, this function can defined as follows:

byte uchar ∈ BYTE → N ∧
byte uchar = λ(v).(v ∈ BY TE|bv to nat(v))
The definitions of the library types reuse the basic definitions from the hard-

ware library. This provides greater confidence and facilitates the proof process,
because the prover can reuse the previously defined lemma.

The inverse function uchar byte is easily defined:
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uchar byte ∈ UCHAR → BYTE ∧
uchar byte = (byte uchar)−1

Similarly, several other functions and lemmas were created for all other data
types.

4 Description of the Z80 B model

The Z80 is a CISC microcontroller developed by Zilog [6]. It supports 158 dif-
ferent instructions and all of them were specified. These instructions are classi-
fied into these categories: load and exchange; block transfer and search; arith-
metic and logical; rotate and shift; bit manipulation; jump, call and return;
input/output; and basic cpu control.

The main module includes an instance of the memory module and accesses
the definitions from basic data types modules and the ALU module.

MACHINE
Z80

INCLUDES
MEMORY

SEES
ALU, BIT DEFINITION, BIT VECTOR DEFINITION,
BYTE DEFINITION, BV16 DEFINITION,
UCHAR DEFINITION, SCHAR DEFINITION,
SSHORT DEFINITION ,USHORT DEFINITION

Each instruction is represented by a B operation in the module Z80. By
default, all parameters from operations are either predefined elements in the
model or integers values in the decimal representation. The internal registers
contain 208 bits of reading/writing memory. It includes two sets of six general
purpose registers which may be used individually as 8-bits registers or as 16-
bits register pairs. The working registers are represented by variable rgs8 . The
domain of rgs8 (id regs8 ) is a set formed by identifiers of registers of 8 bits.
These registers can be accessed in pairs, forming 16-bits, resulting in another set
of identifiers of 16-bits registers, named id reg16 . The main working register of
Z80 is the accumulator (rgs8 (a0 )) used for arithmetic, logic, input/output and
loading/storing operations.

4.1 Modelling Registers, Input and Output Ports and Instructions

The Z80 has different types of registers and instructions. The CPU contains
general-purpose registers (id reg 8 ), a stack pointer (sp), program counter (pc),
two index registers (ix and iy), an interrupt register (i ), a refresh register (r ),
two bits (iff1 , iff2 ) used to control the interruptions, a pair of bits to define the
interruption mode (im) and the input and output ports (i o ports). Below, part
of the corresponding definitions are replicated from the INVARIANT:

rgs8 ∈ id reg 8 → BYTE ∧ pc ∈ INSTRUCTION ∧
sp ∈ BV16 ∧ ix ∈ BV16 ∧ iy ∈ BV16 ∧
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i ∈ BYTE ∧ r ∈ BYTE ∧ iff1 ∈ BIT ∧ iff2 ∈ BIT ∧
im : (BIT × BIT) ∧ i o ports ∈ BYTE → BYTE

A simple example of instruction is a LD n A, as shown below. Many times,
to model an instruction is necessary to use the predefined functions, these help
the construction of model. This instruction use the updateAddressMem function
from Memory module and it receives an address memory and its new memory
value. Finally it increments the program counter (pc) and update the refresh
register (r ).

LD n A ( nn ) =
PRE nn ∈ USHORT
THEN
updateAddressMem ( ushort to bv16 ( nn ) , rgs8 ( a0 ) ) ||
pc := instruction next ( pc ) || r := update refresh reg(r )

END
The microcontroller model can specify security properties. For example, the

last operation could have a restriction to write only in a defined region of memory.

5 Proofs

The proof obligations allow to verify the data types, important system properties
and if the expressions are well-defined (WD)2. The properties provide additional
guarantees, because they can set many safety rules. However, the model can be
very difficult to prove.

Several iterations were needed to provide the good library definitions as well
as to fine-tune the model of the microcontroller instructions by factoring common
functionalities into auxiliary definitions.

However, few proof commands3 need to be used to prove most proof obli-
gations. As there are many similar assembly instructions, some human-directed
proofs, when replayed, could discharge other proof obligations. A good example
is a set of 17 proof commands that quickly aided the verification of 99% (2295)
of WD proofs. We also set up a proving environment consisting of networked
computers to take advantage of the distribution facilities now provided in the B
development environment. Finally, all of the 2926 proof obligations were proved
using the tool support of the development environment.

6 Related Works

There are in the literature of computer science some approaches [2, 3] to model
hardware and the virtual machines using the B method. Then, in both works
the B method has been used successfully to model the operational semantic.
2 An expression is called “well-defined” (or unambiguous) if its definition assigns it a

unique interpretation or value.
3 The proof commands are steps that direct the prover to find the proof, and cannot

introduce false hypothesis.
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However the cost of modelling was still expensive and this paper quoted some
techniques to lower the cost of modelling.

In general, the researchers employing the B method have focused on more
abstract level of description of software. Considering low-level aspect, there has
been previous work on modelling the Java Virtual Machine [3].

The main motivation of our research is the development of verified software
up to the assembly level, which requires specifying the semantics of the under-
lying hardware. Thus, some aspects were not modelled in our work such as the
execution time of the instructions. Also we did not consider the microarchitecture
of the hardware as the scope of our work does not include hardware verification.
However, there are many other specialized techniques to verify these questions.

7 Conclusions

This work has shown an approach to the formal modelling of the instruction set
of microcontrollers using the B method. During the construction of this model,
some ambiguities and errors were encountered in the official reference for Z80
microcontroller [6]. As the B notation has a syntax that is not too distant from
that of imperative programming languages, such model could be used to improve
the documentation used by assembler programmers. Besides, the formal notation
used is analyzed by software that guarantees the correctness of typing, the well-
definedness of expressions, in addition to safety properties of the microcontroller
state.

Future works comprise the development of software with the B method from
functional specification to assembly level, using the Z80 model presented in this
paper. The mechanic compilation from B algorithmic constructs to assembly
platform is also envisioned.

Acknowledges: This work received support from ANP (Agência Nacional do
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