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Abstract

This paper investigates the application of the B method beyond the classical algorithmic level provided by
the BO sub-language, and presents refinements of B models at a level of precision equivalent to assembly
language. We claim and justify that this extension provides a more reliable software development process
as it bypasses two of the less trustable steps in the application of the B method: code synthesis and
compilation. The results presented in the paper have a value as a proof of concept and may be used as a
basis to establish an agenda for the development of an approach to build verifying compilers [11] based on
the B method.

Keywords: Verifying compiler, B method.

1 Introduction

The construction of certified software requires the application of special techniques
such as correct-by-construction approaches. Some examples are the extraction of
programs from mathematical proofs of the satisfiablity of their specification [9] and
obtaining code, either from successive proved correct refinements [4] or from ad
hoc refinements defined by the designer and formally verified a posteriori. The B
method [2], used as a basis for the work described in this paper, follows the latter
approach, although the results obtained are extensible to the former approach.
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The B method manages to successfully span the development process from mod-
elling down to the algorithmic level. However, to cover the remaining steps towards
a running implementation, one needs to synthesize the algorithmic model to some
programming language and then compile the resulting code into the target platform
assembly language. These last two steps cannot be verified using the formal verifica-
tion approach provided by the B method. Indeed, code synthesis maps constructs of
languages that do not have common semantic underpinnings. Compilation is even
more troublesome, since, in addition to the semantic gap, there is also usually a
deep transformation of the code structure caused by optimisation and other trans-
formations, and the effort put in the B-based development may be jeopardized by
a bug in the compiler. To increase the confidence on the generated code, industrial
adopters of the B method employ a redundant tool chain, using two distinct imple-
mentations of code synthesis and compilation. This pragmatic approach however
does not provide a theoretically satisfying evidence of the result correctness and
comes at the cost of having to deal with the execution of redundant programs.

This paper proposes an approach that, although based on existing ingredients,
innovates in employing them to extend the reach of the B method to the assem-
bly level, thereby eliminating the need for these two less reliable steps following
the application of the B method, namely code synthesis and compilation. Proof
obligations may be generated and discharged to check that the resulting assembly
program refines, i.e. is a correct implementation of, the original functional model.
Employing this approach, the translation to binary code is as simple and direct
as that of an assembler, i.e. does not require modification of the code structure
and may be considered as a (trivial) implementation of a one-to-one function from
assembly symbolic instructions to their binary correspondents. The compilation
presented in this paper has been performed manually, and the experience gained
will be used to define translation rules and implement them in a tool.

Related work.

The approach investigated in this paper requires to verify that the result of the
compilation is a correct refinement for each possible input. Another approach is to
prove once for all the correctness of the compiler itself. Such proof relies on the
formalization of the input and output languages in a unique semantic model. This
approach has been undertaken successfully in several research projects (e.g. [16] [7]
[13] [14] [6]2). In these approaches, the input languages of the verified compiler
are programming languages, or subset thereof, and the target languages are assem-
bly languages. The semantics of both languages, as well as possible intermediate
representations, and the different translation steps are formalized in the logics of
proof assistants [15,5,19]. In order to build a certified compiler for B using such
approach, one would first need to develop a full formalization of the B method in
a mechanical proof assistant, formalize the BO constructs, the target platform(s)
and the compilation of the high level constructs in terms of the target platform
instruction set.

3 See [10] for an extensive bibliography on compiler verification.
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Plan of the paper.

The paper is structured as follows. Section 2 provides a general introduction
to the B method and briefly outlines the proposed approach, comparing it to a
classical application of the B method. Section 3 presents the main lines of the
definition of a B model for the instruction set of a simple, yet computationally rep-
resentative, micro-controller. Section 4 presents the mapping of the main constructs
of the algorithmic language B0 to assembly constructs, through a series of simple
examples, and introduces thus the structure of an assembly program as a B imple-
mentation. Experimental results of the application of this approach to commercial
micro-controllers are also reported in this section. Finally, Section 5 draws prelimi-
nary conclusions on this work and an agenda for future research in the direction of
constructing a production-level verifying compiler based on the B method.

2 Introduction to the B method

The B method for software development [2] is based on the B Abstract Machine
Notation (AMN) and the use of formally proved refinements up to a model suffi-
ciently concrete that programming code can be automatically generated from it.
Its mathematical basis is first order logic, integer arithmetic and set theory, and
its constructs are similar to those of the Z notation [18]. Its structuring constructs
are more closely related to imperative modular programming language constructs.
Also, its more restrictive constructs simplify the job of support tools, and industrial
software for the development of B based projects is widely available [8,3].

2.1 QOwverview

A B specification is modular: a module defines a set of valid states, including initial
states, and operations that may lead to a state transition. The design process starts
with a module with a so-called functional model of the system under development.
In B, such module is called a machine. The B method requires to prove the satisfi-
ability of the model constraints, that the initial states are valid and that operations
do not map valid states to invalid states.

Once an initial functional model has been constructed and verified, the B method
provides constructs to define refinement modules. A refinement is always associated
to another, more abstract, model and specifies a design decision: either about the
concrete representation of the state, or about the algorithmic realization of an op-
eration (or both). The B method imposes that the user proves that each refinement
conforms to the refined module.

Finally, so-called implementation modules form a special case of refinement
where the abstraction level is similar to that of a programming language. This
paper uses the term algorithmic model to qualify such modules. The part of the B
notation that may be used to define implementations is called BO (e.g. it does not
contain non-deterministic constructs). Using as input an implementation module,
it is possible to generate source code in a conventional program language such as C
or ADA.
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The B method is illustrated graphically in Figure 1. At each step, proofs need
to be developed to check the consistency of the model or the conformity of the
refinements. Once the resulting code has been compiled, it may be verified using
test data generated from the initial functional model. This verification is generally
not exhaustive but may detect errors introduced by the code synthesis tool or the
compiler.

’Informal requirements‘
|

modelling
Il

| Functional model?

| Design model

Design model

Design model
] :
i £ _+ Design model

— test extraction

| Algorithmic model?

,l

Programming languages
test code

’Binary assembly code }; Test programs ‘

Figure 1. Overview of a software engineering process based on the B method. Rectangle correspond to
different artifacts. Slanted rectangles are human or automated activities. Grey rectangles are artifacts
produced in the B method. The V labels emphasize that formal verification is applied to the corresponding
artifact. The light-grey area is the main focus of this work.

|Programming language code|

}

2.2 The B notation

Essentially, a B module contains two main parts: a state space definition and the
available operations. It may additionally contain auxiliary clauses in many forms
(parameters, constants, assertions), but those are essentially for practical purposes
(i.e. to promote modularity, reuse, etc.) and do not extend the expressive power of
the notation. In the remainder, we will restrict our discussion to the core clauses of
the module specification.

The specification of the state components appears in the VARIABLES and IN-
VARIANT clauses. The former enumerates the state components, and the latter
defines restrictions on the possible values they can take. If V' denotes the state
variables of a machine, the invariant is a predicate on V. Verifications carried out
throughout the development process have the intention of checking that no invalid
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state will ever be reached as long as the operations of the machine are used as
specified.

For the specification of the initialisation as well as the operations, B offers a set
of so-called substitutions. These are “imperative-like” constructions with translation
rules that define their semantics as the effect they have on the values of any (global
or local) variables to which they are applied. The semantics of the substitutions is
defined by the substitution calculus, formalizing how the different substitution forms
rewrite to formulas in first-order logic. Let S denote a substitution, F an expression,
then [S]E denotes the result of applying S to E. For instance, an operation that
would increment a counter variable v can be specified as v := v + 1. Indeed,
the basic substitution is very similar to the side-effect free assignment construct
found in imperative programming languages. Applying such substitution to an
expression consists in substituting the target variable v with the source expression.
For instance, [v := v+1]v > 0 simplifies to v+1 > 0. Besides the basic substitution,
the B method provides more elaborate substitution constructions, such as:

e Non deterministic substitution ANY v WHERE C THEN S END applies sub-
stitution S with variable v having any value that satisfies predicate C.
Substitution v :€ V', where V is a set, is equivalent to ANY x WHERE x €
V THEN v := 2z END.

e Parallel substitution [S || S’] applies both substitutions S and S” simultaneously.

e The substitution with pre-condition PRE C THEN S END is used to specify
a partial operation, defined only when condition C' holds. For instance, the
operation that increments v only when it is smaller than value top may be specified
as PREv < topTHEN v := v+ 1 END.

The example shown in Figure 2 illustrates the most basic clauses in the functional
model of a traffic light. The model is named traffic_light, as defined in clause
MACHINE. The state is composed of a single variable, named color. The value of
this variable must belong to COLOR and is non-deterministically initialized with
one element of this set. Follows then the specification of the operation advance,
modelling a transition of the traffic light.

The previous model is then refined to a module where the state is a single integer
value (Figure 3). The VARIABLES clause declares the unique component state in
the refinement, and its relationship with the functional model state is established in
the INVARIANT clause: the value of count is equal to the application of function
color_refine to the abstract variable color.

2.8 Qwverview of the approach

The weakest link in a software production process based on the B method is the
synthesis of software in a programming language and its compilation towards the
target platform assembly language. As the BO language is close to programming
constructs, code synthesis is usually considered safe; however if the target language
uses constructs unsupported by the BO language (e.g. object orientation), this
transformation may not be as straightforward as it seems. In industrial practice, a
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MACHINE traffic_light
SETS COLOR = {green, yellow, red}
VARIABLES color
INVARIANT color € COLOR
INITIALISATION color :€ COLOR
OPERATIONS
advance =
CASE color OF
EITHER green THEN color := yellow
OR yellow THEN color := red
OR red THEN color := green
END
END
END

Figure 2. An example of a functional model in B

REFINEMENT traffic_light_data_refinement
REFINES traffic_light
CONSTANTS color_refine, color_step
PROPERTIES
color_refine € COLOR — NA
color_refine = {green +— 0, yellow — 1, red — 2}A
color_step € 0..2—0..2 A color_step = {0 +— 1,1+ 2,2+ 0}
VARIABLES count
INVARIANT count € N Acount € 0..2 A count = color_refine(color)
INITIALISATION count :=0

OPERATIONS
advance = count := color_step(count)
END

Figure 3. A B refinement module for the example of Figure 2

redundant tool chain (two code synthesis tools and two compilers) is used to produce
two versions of the program. Both versions are executed and their results should
agree. This approach requires twice the number of computational resources that
would be necessary if only one instance of the generated program was executed. To
reduce this overhead, one could consider adopting a code synthesis targetting the
source language of a verified compiler. However one would still need to close the
semantic gap between this language and BO0.

This paper proposes a new approach to address these issues, by applying the
concepts of the B method to generate software artifacts down to assembly level. The
approach is divided into: (1) modelling the target computational platform, and (2)
refining the algorithmic model to an implementation solely based on the platform
model.

The target platform may be modeled with the B abstract machine notation:
the state of the machine represents the state of the platform (i.e. registers and
memory), and each operation represents an assembly instruction. This only needs
to be performed once for a given target platform. Further details are provided in
Section 3, where a model of the Random Access Machine model of computation is
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presented.

The algorithmic model has to be further refined into an assembly-level model.
The latter model is defined on top of the target platform model discussed previ-
ously. A general strategy for this refinement is to map the state variables of the
algorithmic model to different addresses of the platform memory, and to trans-
late the algorithmic-level operations to combinations of operations defined in the
platform model corresponding to the assembly language instructions. The result-
ing assembly-level refinement needs to be proved compliant with the corresponding
functional model. We then obtain a software artifact at the assembly level that
formally refines the initial functional model.

This approach provides an extension to the B method as sketched in the left
of Figure 4. However, the classic B method has some restrictions that prevent us
from applying this ideal “strategy”, namely that loop constructs may only appear
in algorithmic models, and such modles may not be suject to refinements.

Fortunately, it is possible to devise another solution to circumvent this limitation
without modifying or extending the B method. This solution is illustrated at the
right of Figure 4: instead of establishing a refinement relation between the assembly
and the algorithmic models, consider a refinement of the design model directly
preceding the algorithmic model in the refinement process. The construction of the
assembly implementation from the algorithmic implementation should be formalized
by a set of rules that can be implemented to form a B-based formal compiler, but
the verification would be carried out as usual in a B refinement, with respect to the
design model. Section 4 provides a series of small examples, representative of the
different kinds of algoritmic constructs provided by the B method, and shows the
correspondence between algorithmic and assembly implementations. The examples
have been produced manually, with the aim to gain insight on how the translation
could be formalized into a set of rules that would serve as the basis of a compiler
from B0 to assembly-level models. They all use the assembly-like platform presented
in the following.

3 A B model for an assembly language

In this section, we present the functional model of a minimal processor. Its actual
definition in the B notation is interspersed with an informal description of the model.

The essence of current micro-processors and micro-controllers is captured by
the Random Access Machine computation model [12], which is Turing complete.
Therefore, we use and model this machine. The variables composing the state of
the machine are mem, an unbounded memory storing bounded natural numbers, pc,
the program counter, and end, that is used to detect the end of the computation.
When executing a program on the ram processor, the value of the program counter
is less or equal than that of the end marker; when it is equal, then the execution
stops. The machine can be initialized in any state.

Each instruction of the ram processor is modelled as a B operation. Instruction
nop, the so-called no-operation (also known in B as skip) increments the program
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Figure 4. Extending the B method down to the assembly level: ideal (left) and actual (right).

counter as its only effect. Instruction set is responsible for storing a constant value
val into a memory location a. Observe that the execution of an instruction has a side
effect on the program counter. Instruction inc is the only data modifying instruction
in our machine: it increments the value stored at the location a of the memory.
Observe that the set N is bounded in B, and the increment instruction is restricted
so that overflow does not occur. Instruction copy copies the value stored in address
src to the address dest. Instruction testgt is a conditional branch: it tests if the value
stored in location al is strictly greater than the value stored in location a2. If this
is the case, the program counter is incremented by one, otherwise two. Instruction
testeq (omitted here) is very similar but tests for equality. The goto instruction
directly alters the value of the program counter. It is an unconditional branch,
and is used in combination with the testing instructions to implement conditional
and iteration constructions. Moreover, before starting the execution of a program,
one needs to reset the program counter and the end of program marker. This
functionality is provided by the operation init, that takes as input the size of the
program, i.e. the number of instructions. This is the necessary condition for the
ram processor to be able to start executing instructions.

This approach has been applied by the authors to build formal B models of the
programming resources (or part thereof), offered by several representative commer-
cial micro-controllers, namely Microchip’s PIC, Intel’s 8051 and Zilog’s Z8&0.
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MACHINE ram
CONCRETE_VARIABLES mem, pc,end
INVARIANT mem € (N — N) A pc € NAend € N
INITIALISATION mem :€ (N — N) || pc :€ N || end :€ N
OPERATIONS
init(sz) = PRE sz € NTHEN
pc:=0| end := sz
END:;
nop = PRE pc + 1 < end THEN pc := pc + 1 END;
set(a,val) = PREa € NAval € NApc + 1 < end THEN
mem(a) :=val || pc := pc+1
END;
inc(a) = PREa € NAmem(a) < maz(N) A pc + 1 < end THEN
mem(a) := mem(a) + 1 || pc:= pc+1
END;
copy(sre,dst) = PRE src € NAdst € NApc + 1 < end THEN
mem(dst) := mem(src) || pc := pc+ 1
END;
goto(val) = PREwal € N Aval < end THEN pc := val END

testgt(al,a2) = PREal € NAa2 € NA
(mem(al) > mem(a2) = (pc+ 1 < end))A
(mem(al) < mem(a2) = (pc+ 2 < end))
THEN
IF mem(al) > mem(a2) THEN pc := pc + 1 ELSE pc := pc + 2 END
END;
END

4 Compilation of BO constructs: examples

The modelling language of the B method has a sub-language, named B0, for algo-
rithmic models. Variable assignment as well as sequential, conditional and iterative
composition form the basic constructs of BO. This section shows, through a series
of increasingly complex (yet basic) examples, how these constructs can be refined as
combinations of assembly instructions of the ram processor presented in Section 3.

4.1 Sequencing

The design model in the machine sequencing has two variables and a single operation
that swaps the values of these variables.
VARIABLES q,b
INVARIANTa € NAb € N
INITIALISATIONa:eN || b:e N
OPERATIONS
run = a:=b|b:=a

The salient parts of a possible algorithmic model are given below. The variables
are implemented in a machine nat that provides setter and getter for a variable
holding a value of the set NATURAL (a bounded set of natural numbers).
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IMPORTS ai.nat, bi.nat
INVARIANT a = ai.value A b = bi.value
OPERATIONS
run =
VAR tmpIN
tmp = bi.value;
bi.set(ai.value);
ai.set(tmp)
END

Compilation to assembly includes mapping the variables to memory locations and
algorithmic-level instructions to sequences of assembly instructions. Here, variables
at and bi are mapped to locations 0 and 1, respectively. This static memory allo-
cation is formalized in the invariant of the assembly-level model. In the presented
examples, the types of the model variable and of the memory locations match, so
the assembly invariant is obtained by substitution of the implementation variables by
their corresponding memory location in the algorithmic invariant. For this example,
we have:

IMPORTS uc.ram
INVARIANT a = uc.mem(0) A b = uc.mem(1)

The compiled assembly program is a sequence of three copy instructions that per-
form the swap between the memory locations corresponding to the model variables.
The assembly-level operation is thus:

OPERATIONS
run =
BEGIN

uc.init(3);

uc.copy(1,2);

uc.copy(0,1);

uc.copy(2,0)
END

Although this model is a valid refinement of the initial machine, we will show, in
the next example, that its construction pattern cannot be used as a general solution
to build assembly-level refinements.

4.2 Conditional statement

This new example system has two operations: one to register values and one to
return the largest registered value. The state is the set of all the values registered
so far.

VARIABLES st
INVARIANT st € P(N)
INITIALISATION st := 0
OPERATIONS
add(v) =
PREv € NAv € st THEN
st := st U {v}
END;
res «— largest = PRE st #  THEN res := max(st) END
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This is a classical example where an abstract variable may be refined to a variable of
a simpler data type. We focus our attention on the refinement of the first operation:

IMPORTS mi.nat
INVARIANT max(st) = mi.value
OPERATIONS
add(v) =
IF mi.value < v THEN
mi.set(v)
END

The assembly model may no longer be a sequence of assembly instructions as in
the previous example. The reason is that the execution flow is no longer linear, due
to the conditional construct. To cope with this situation, the assembly model is
built as the execution model of the ram machine: based on the current value of the
program counter, an instruction is fetched and executed. This action is repeated
until the program counter reaches the end of the program:

IMPORTS uc.ram
INVARIANT maz(st) = uc.mem(0)

OPERATIONS
add(v) =
BEGIN
uc.init(3);
WHILE uc.pc < uc.end DO
BEGIN
CASE uc.pc OF
EITHER 0 THEN uc.set(1,v)
OR 1 THEN uc.testgt(1,0)
OR 2 THEN uc.copy(1,0)
END
END
END
INVARIANT ...(see below)
VARIANT ...(see below)
END
END

This strategy needs a loop construct that halts when the program counter reaches
the end marker. We call this the fetch loop: it associates each possible value of the
program counter with the corresponding assembly instruction. The local variable pc
maintains the value of the program counter of the ram machine. The local variable
end stores the end marker of the program and remains constant. Both variables
are employed in the formulation of the variant and invariant of the loop. As the
algorithmic model does not jump backwards, the variant can be expressed as the
distance between the end of the program and the value of the program counter.
The invariant of the fetch loop establishes the relationship between the variables of
the ram machine and the local variables of the operation and the state of the ram
memory for each possible valuation of the program counter:
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INVARIANT
0 < uc.pc A uc.pc < uc.end\
(uc.pc = 0 = uc.mem(0) = maz(st))A
(uc.pc =1 = uc.mem(0) = mazx(st) A uc.mem(1l) = v)A
(uc.pec = 2 = uc.mem(0) = maz(st) A uc.mem(1l) = v A maz(st) < v)A
(uc.pc = 3 = uc.mem(0) = mazx(v, maz(st)))
VARIANT uc.end — uc.pc

4.8  Loop

The last example implements the addition of two integers as iterated increments.

VARIABLESa,b, s
INVARIANTa € NAbe NAs e NA(a+b) €N
OPERATIONS

run=s:=a+b

Recall that the ram machine only has an increment operation, and addition needs
to be implemented iteratively, as in the following algorithmic model:

IMPORTS ai.nat, bi.nat, si.nat
INVARIANT a = ai.value A b = bi.value A\ s = si.value
OPERATIONS

run =

VAR partial,i IN

partial := ai.value;

i:=0;
WHILE ¢ # bi.value DO
BEGIN
partial := partial + 1;
=141
END
INVARIANT i € NAi < bi.value A partial = ai.value + i
VARIANT (bi.value — 1)
END;
si.set(partial)
END

Based on this algorithm, we devise the following assembly-level model of the addition
algorithm by iterated increments (excerpts):

INVARIANT a = uc.mem(0) A b = uc.mem(1) A s = uc.mem(2)
OPERATIONS
run =
BEGIN
uc.init(7);
i :=0;
WHILE uc.pc < uc.end DO
BEGIN
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CASE uc.pc OF

EITHER 0 THEN uc.copy(0,2)
OR 1 THEN uec.set(3,0)
OR 2 THEN uc.testeq(1,3)
OR 3 THEN uc.goto(7)
OR 4 THEN uc.inc(2)
OR 5 THEN uc.inc(3)
OR 6 THEN BEGIN
uc.goto(2)
=1+ 1
END
END
END
END
INVARIANT

0 < uc.pc A uc.pc < uc.end Ni € NA
uc.mem : (N— N) A uc.mem(0) = a A uc.mem(1) = bA
(uc.pc =0=1i=0Auc.mem(2) = s)A
(uc.pc =1=1i=0Auc.mem(2) = a)A
(uc.pc =2 = (uc.mem(2) = a + uc.mem(3) A uc.mem(3) =i A1 < b))A
= a+ uc.mem(3) A uc.mem(3) =i Ai="b))A
= a+ uc.mem(3) A uc.mem(3) =i Ai < b))A
=a+ uc.mem(3) + 1 A uc.mem(3) =i Ai < b))A
=a+ uc.mem(3) A uc.mem(3) =i+ 1Ai<b))A
(ue.pc =7 = (uc.mem(2) = a 4+ uc.mem(3) A uc.mem(3) =i Ai = 1))
VARIANT pgvar(uc.pc, uc.mem(1),1)
END
END

(uc.pc = 3 = (uc.mem(2
(uc.pc =4 = (uc.mem(2
(uc.pc =5 = (uc.mem(2

NN AN AN

(uc.pc = 6 = (uc.mem(2

This assembly model follows the same pattern as the previous example. Instructions
0 and 1 codify the preamble, 2 to 6 the increment loop, and 7 is the end of the
program execution. Note that we need a variable, here called i, to keep track of the
number of times the increment loop has been executed. Its value is initially zero
and it is incremented whenever the program counter is 6, i.e. when the algorithm
jumps back to the evaluation of the loop condition. Also, observe that the invariant
of the fetch loop states that when the value of the program counter is two, the
algorithmic loop condition shall hold.

The variant is the value of a function application to the three program elements
pc, the program counter, uc.mem(1), the value of b, and 4, the number of times
the increment iteration of the algorithm has been executed. The function is called
pgvar (program variant) and is defined in the following machine:
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CONSTANTS pgvar, pgsz,la,lsz
PROPERTIES
pgsz € NAla € NAlsz € NA
pgvar € NXNxN-HNA
pgsz =T Alsz=>5ANla=2A
Vpc, b, ie
(pc e NAbeNAi € N=
(pc = 7 = pgvar(pc, b,i) = pgsz — pc)A
((pc=0Vpc=1)=
pgvar(pc, b, i) = pgsz — pc + lsz X b)A
((pc=2Vpc=3Vpc=4Vpc=5Vpc=06)=
pgvar(pc,b,i) = pgsz — la+ lsz X (b— 1) — (pc — la)))
The expression of the function body is quite complex and, for the sake of clarity,
uses three numeric constants: pgsz the total number of instructions in the program,
lsz the size of the block codifying the loop and la the address of its first instruction.
The value returned by pgvar is greater or equal to the number of instructions that
remain to be executed. The corresponding expression needs to be derived from the
loop variant of the algorithmic level model.

4.4 Lessons learnt

The three examples presented form a basic, yet fully expressive, language. These
assembly models have been built manually and the refinement relation between
these models and the initial design models has been checked using the B4free tool
through the Click'n’Prove interface [1]. Note that, in general, it is not possible, due
to the rules of the B method, to establish a B refinement from an algorithmic model
to an assembly model. Our intuition is that it would be easier, as the semantic gap
is narrower.

In the general case, deriving the assembly program from the algorithmic models
involves applying classical compilation techniques to map algorithmic variables and
instructions to memory locations and a sequence of assembly instructions respec-
tively. We have seen that the elements of a verifiable assembly level refinement
are:

¢ The model invariant formalizes the mapping of variables to memory locations,
and is obtained by applying, in the algorithmic invariant, substitution of the
algorithmic variables by the corresponding memory locations,

e Each model operation is a fetch loop that associates the possible values of the
program counter with the corresponding assembly instructions,

¢ Fetch loop invariants specify the state of the assembly machine for each possi-
ble value of the program counter. It may be derived from the model invariant,
the semantics of assembly instructions, and the possible loop invariants of the
algorithmic model.

¢ Fetch loop variants express an upper bound of the number of instructions that
remain to be executed, for each possible value of the program counter. The
expression of such functions may be derived using static code analysis such as
worst-case execution time techniques [17].
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Model Program Different instruc- Proof obligations
size tions
automatic interactive
PIC 12 6 155 5
8051 9 5 167 3
280 17 7 564 5
Table 1

Statistics on implementations of the traffic light on different micro-controllers

Based on the insight obtained from this first appraisal, a second experiment was
made, namely to apply the approach investigated to actual computing platforms.
This experiment is briefly commented in the next section.

4.5  Ezxperiment with commercial micro-controllers

Based on the conclusions of this preliminary study, the relevant part of the instruc-
tion set of three commercial micro-controllers was modelled following the style of the
RAM machine (Section 3). The selection of micro-controllers over micro-processors
was motivated by the ultimate goal of employing the approach to produce safety-
critical embedded software.

The chosen products were Microchip’s PIC16C432, Intel’s 8051, and Zilog’s
780, three micro-controllers widely used in the industry that are therefore good
candidates as target in a full-fledged investigation of the approach presented in this
paper. It is interesting to note that the B projects of the different micro-controllers
share some basic definitions useful in hardware modelling (such as the definition of
bit vector type and operations, and their conversion to integer ranges).

The traffic light example of Section 2.2 was then manually compiled to assembly-
level B models in each of these platforms. Table 1 reports some statistics about
these projects: the size of the assembly programs, the number of different assembly
instructions used in these programs, and the number of generated proof obligations
that were verified automatically and interactively. Initially, a large number of proof
obligations would not be proved automatically by the theorem prover provided with
the tool support. After examination of these proof obligations, we observed that
they required instantiating the definition of the functions defining the increment of
the program counter. We then added a few lemmas stating simple facts about this
function (B provides an “assertions” clause to introduce such lemmas) and most
proof obligations were then discharged automatically by the prover.

4.6 Open issues.

The study presented in the paper does not cover some important aspects such as:
data structures (including pointers), modularity, libraries, input/output, interrupts,
real-time, etc.
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All the examples only manipulate simple integer or scalar values. A full-scale
project would certainly involve more complex data structures that can be described
in the BO language. On the other hand, it is worth noting that, in order to avoid
certain classes of bugs, software in safety-critical projects is often restricted so that
it does not use features such as dynamic memory allocation and pointers.

Support for modularity should result in techniques that cater calls to routines in
such a way that when a formally verified assembly-level refinement is available, this
result can be leveraged to show the correctness of the caller routine. This criterion
is fundamental to ensure the scalability of the approach.

Micro-controllers provide a number of facilities (i.e. dedicated hardware), such
as input/output and interrupt pins for interfacing directly the processor with its
environment, timers, etc. In the presented examples, such facilities have not been
taken into account. Future work include modelling and using such facilities in the
B development.

5 Conclusion and future work

In this paper, we identified a potential way to apply the B method to solve the
challenge of “the verifying compiler”. We have presented the results of an initial
appraisal of the feasability of this approach.

Applying the B method, we built a formal model inspired from the Random Ac-
cess Machine, a computational model that is similar to that of mainstream micro-
controllers and micro-processors. Using as a target the model of this machine, we
developed three assembly level B implementations of increasing complexity that
employ four basic, yet computationally complete, algorithmic constructs: assign-
ment, sequence, conditional and loop. We obtained thus a template for assembly
level models for the B method. This template shall be instantiated by a mapping
between algorithm variables and the machine memory addresses, the compilation
of the algorithm in a sequence of assembly instructions, the construction of the as-
sembly program variant and invariant, based on the memory layout mapping, the
algorithmic model invariants and variants, and the assembly instruction semantics.

This approach has been instantiated to build correct assembly implementations
of a simple operation onto different commercial micro-controllers. Although the B
method may not be adequate to formalize all aspects of a microcontroller specifica-
tion, we found it quite suitable to provide a formal model of the assembly language
instructions.

This initial appraisal shows the feasibility of the B-based approach to build a
verifying compiler, thereby taking advantage of a large body of techniques and tools
to address this grand challenge.

However, much work remains to be done to meet the goals of building a full-
fledge tool chain based on the B method and targetting an assembly-level industrial
platform. We shall define and implement formal rules for the construction of as-
sembly level models from algorithmic models. The application of such rules would
result in a set of proof obligations that would need then to be verified. In order
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to address expected scalability issues in this verification effort, different solutions
may be investigated. First, the restrictions imposed by B method on refinements
could be relaxed, so that the translation may be realized in small steps, using inter-
mediate models mimicking intermediate representation of compilers, where issues
such as register allocation and code optimization are more easily implemented and
verified (in a way similar to that of, e.g. [14]). Also, some proof obligations need
manual assistance with the current tool support for B. Another line of work is to
investigate if and how the automation of these provers can be improved (by devel-
oping and applying additional proof rules). Another solution would be to generate
proof scripts corresponding to these proof obligations along the translation process.

More work also needs to be done from the modelling viewpoint. On the one
hand, more elements of the B0 language need to be addressed, allowing for richer
data structures. In order to cater to designers of safety-critical systems, one also
needs to provide support for facilities such as interrupts, timers and input/output.
In this line, modelling and integrating real-time operating systems services is also
worthy of attention.

Eventually, the experience gathered in this research should be used to provide
tool support for developpers. This support shall be integrated with existing frame-
works for the B method, or variations thereof, and should automate the generation
of assembly models and the verification of the corresponding refinement relations.
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