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Abstract

This paper presents a method for the rigorous develop-
ment of Java Card smart card applications, using the B
Method. Its main feature is to abstract the particularities
of Java Card and smart card aware applications from the
specifier as much as possible. In the proposed approach,
the specification of the application logic does not need to
take into account the specific aspects of the Java Card plat-
form (in particular, communication between the card accep-
tance device and the smart card itself). A sequence of pre-
established refinements is then applied to the original spec-
ification to yield an implementation-level B description of
the component, which can then be used to synthesize Java
Card code. This method reduces significantly the required
amount of user-interaction and improves productivity. An
interesting side-effect of this approach is that the specifica-
tion may be reused with any other platform of implementa-
tion.

1. Introduction

Smart card support is a component of the IT infrastruc-
ture in a growing number of sectors [12]: banking, mobile
and non-mobile communications, ID/access, leisure, retail
and loyalty, transport, healthcare, government, multimedia,
etc. Most of the applications require a high-degree of relia-
bility, and make smart card aware software design a suitable
application for formal methods.

Java Card [5] is one of the leading technologies in this
sector as it provides significant features: multiple appli-
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nology.
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cations, portability, compatibility with a popular program-
ming language technology (Java). The strategic impor-
tance of this market is a strong motivation to address the
problem of providing rigorous software development pro-
cesses for smart-card aware applications based on the Java
Card technology.

The B method [1] is a good candidate for such process.
Based on the experience gathered from the development of
formal specification languages such as VDM and Z, B is
one of the foremost formal methods with a strong industrial
support. It has been succesfully applied in the development
of complex and safety-critical applications such as the au-
tomatic train operating system for METEOR, a driverless
metro in the city of Paris [3].

In this paper, we propose a specialization of the B
method that aims at improving the productivity and relia-
bility in the development of Java Card software. Previous
work showed the possibility to automatically generate Java
code [17] and Java Card 2.1 components [8] from B mod-
ules. [17] is limited to the translation of the language as-
pects and ignores some important aspects of the Java Card
platform, such as the communication between the host ap-
plication and the applet running on the smart card, leaving
its specification and implementation as an additional burden
to the designer. [8] does not take advantage of the high-level
communication facilities provided in Java Card 2.2. The
goal of the research presented in this paper is to provide
B design guidelines specific for the Java Card framework
which make it possible to target the Java Card 2.2 comput-
ing environment. An implementation of these guidelines is
under development. This implementation will provide tool
support for our method, automating part of the design pro-
cess.

The paper is organized as follows. The fundaments are
presented in Section 2 (overviewing smart cards and Java
Card) and 3 (introducing the B method). The core contri-
bution of the paper is in Section 4, where the application



of the B method to design Java Card components is pre-
sented. Section 5 concludes the paper with related work and
some final remarks.

2. Smart Cards and Java Card

An increasing number of IT applications require that
users provide data via a portable device. Moreover, for se-
curity reasons, it is desirable that such devices include at
least simple processing capabilities. The smart card tech-
nology answers these needs and gains acceptance and pop-
ularity. Unique amongst the different smart card operating
platforms, Java Card provides vendor inter-operability and
has now reached a de facto standard status in this indus-
try [11].

The Java Card platform provides a subset of the Java
programming language. It allows memory-constrained de-
vices, like smart cards, to run applications in a secure and
inter-operable way. Security is obtained through Java el-
ements, like its secure execution environment, which con-
trols, for instance, the level of access to all methods and
attributes; and the applet separation by a resource named
applet firewall [5]. Inter-operability is the characteristic
that allows the execution of a Java Card application in any
smart card that follows the Java Card specifications, inde-
pendently of hardware and software manufacturers, without
or with few code modifications.

The use of this technology brings many improvements
for the developer of smart card applications. The ease of
programming in Java, that abstracts the low level details
of the smart card system; and Java development tools (like
IDEs, simulators and emulators) allow a rapid application
build, test and installation cycle, reducing the time and the
cost of software production. Moreover, other benefits are
the possibility of multiple applications to coexist in a same
card and the ample compatibility with smart card interna-
tional standards, like ISO 7816.

2.1. Smart Card system and communication
model

A smart card system is composed of hardware and soft-
ware components. These components are: Support soft-
ware, software for communication with the card acceptance
device (CAD), the CAD itself and the smart cards and their
applications.

User-CAD communication software (host application)
This software is responsible for the communication
between an external application, called “host applica-
tion”, and the code running inside the card. It sends
commands for the smart card application and receives
the responses to these commands. This software can

be included in a desktop computer, in a cell phone or
in a security subsystem.

Card Acceptance Device (CAD) A CAD is the device lo-
cated between the host application and the smart card.
It supplies power to the card and is the means of com-
munication between the host application and the appli-
cation inside the card. A CAD can be connected to a
desktop or a terminal, such as an electronic payment
terminal.

Smart Cards and their applications Applications are
stored in the card memory. This can be done when the
card is being manufactured, installing applications in
its ROM memory, or later, installing the applications
in the card’s non-volatile and writable EEPROM
memory. The EEPROM memory can also be written
by applications to store their data. Smart cards also
have a (faster) RAM memory to store temporary
data. Languages like C, the assembly language of
the card and Java Card can be used to develop these
applications. Today, Java Card is supported in more
than 95% [15] of the cards and is considered the best
choice when productivity and security are the main
requirements.

Support software This kind of software provides services
to a smart card application. For instance, we could
have an application that allows the applet to access a
credit card operator service in a secure way.

The communication between these environment items is
performed through a half-duplexed protocol called Applica-
tion Protocol Data Unit (APDU). An APDU message has
the form of a data packet exchanged between the host ap-
plication and the application in the card in a master-slave
architecture. The host application sends commands to the
card application, that, in turn, sends back a response. The
command and the response APDU are the two protocol
structures used to send these messages. In this protocol, a
command APDU is always paired with a response APDU
[5].

With this protocol, it is possible to write a host applica-
tion in a different programming language than that of the
applet, but it requires coding with a high-degree of details,
requiring to encapsulate data into sequences of bytes. The
Java Card platform, since Version 2.2, provides a remote
invocation mechanism (RMI) that hides most of the com-
plexity involved in communicating with the APDU proto-
col.



2.2. The Java Card Remote Method Invoca-
tion framework

The Java Card RMI assumes that the host application
needs to use a service provided by an applet on the card as
an application programming interface (API). This service is
specified as a Java interface that extends directly the prede-
fined Java Remote interface (see example in Figure 1). The
methods of the corresponding implementation class (see
Figure 2) are invokable from a different virtual machine (in
this case, the host-side virtual machine). This implementa-
tion class needs to be developed in the Java Card dialect.
This class shall inherit from the CardRemoteObject
class provided by the Java Card RMI framework, that pro-
vides methods to enable and disable the remote access to
objects. The RMI also provides the class RMIService
that translates method invocations to APDU-level commu-
nications. Java Card imposes restrictions due to the very
nature of the platform it runs on: there is a restricted set
of basic data types, no threads, no guarantee that there is a
garbage collector either. Also, in order to avoid loss of data
consistency on the card, the Java Card framework pro-
vides transaction facilites, as well as specific mechanisms
to distinguish persistent data (need to be maintained when
the power is turned off) from transient data (may be erased
when the card is reset).

In the Java Card environment, applications are called
applets, and are classes inheriting from the javac-
ard.framework.Applet class. An applet must provide an im-
plementation for the methods install and process. The in-
stall method creates the applet by invoking its constructor
method and registers it in the Java Card Runtime Environ-
ment (JCRE), by invoking the register method. The pro-
cess method receives the APDU messages of the host ap-
plication, does the initial processing of these messages, and
invokes a method, passing to it the APDU object as a pa-
rameter. In Figure 3, we present on an example how the
implementation of Remote object can be integrated into an
applet and associated with a RMIService object respon-
sible for the communication with the host-side.

Finally, a reference to the remote object needs to be cre-
ated on the host-side. The OpenCard framework [9] pro-
vides functions to get such reference. Once bound to a local
object, the RMI is transparent to the programmer (see ex-
ample of client code in Figure 4).

2.3. Elements of Java Card programming

Programming for a smart card requires special care
against two possible problems:

available memory Smart card usually have a very limited
amount of memory; in addition, the runtime environ-
ment does not necessarily have a garbage collector.

package br.ufrn.smart.services;
import java.rmi.*;
import javacard.framework.*;
public interface Counter extends Remote{
public static final short UFLOW = (short)0x6000;
public static final short OFLOW = (short)0x6001;
public static final short MAX_VALUE = (short)80;

public short getValue()
throws RemoteException;

public void increment(short n)
throws RemoteException, UserException;

public void decrement()
throws RemoteException, UserException;

}

Figure 1. Remote interface for a simple
Counter service

package br.ufrn.smart.services;
import javacard.framework.UserException;
import javacard.framework.service.CardRemoteObject;
import java.rmi.RemoteException;
public class CounterImpl
extends CardRemoteObject implements Counter {

private short value = 0;
public CounterImpl() {

super();
}
public void increment(short n)
throws RemoteException, UserException {

if ((short) value + n > MAX_VALUE)
UserException.throwIt(OFLOW);

++value;
}
public void decrement()
throws RemoteException, UserException {

if (value == 0)
UserException.throwIt(UFLOW);

--value;
}
public short getValue()
throws RemoteException {

return value;
}

}

Figure 2. Java Card implementation class for
a Counter service



package br.ufrn.smart.services;
import java.rmi.*;
import javacard.framework.APDU;
import javacard.framework.ISOException;
import javacard.framework.UserException;
import javacard.framework.service.*;
public class CounterApplet
extends javacard.framework.Applet {

private Dispatcher disp;
private RMIService serv;
private Remote counter;

public CounterApplet() {
counter = new CounterImpl();
disp = new Dispatcher( (short) 1);
serv = new RMIService(counter);
disp.addService(serv,

Dispatcher.PROCESS_COMMAND);
register();

}
public static void install (

byte[] aid,
short s,
byte b) {

new CounterApplet();
}
public void process(APDU apdu)
throws ISOException {

disp.process(apdu);
}

}

Figure 3. An applet in the Java Card RMI
framework

JavaCardRMIConnect jcRMI =
new JavaCardRMIConnect (cardAccessor);

jcRMI.selectApplet (RMI_COUNTER_AID);
Counter myCounter =

(Counter) jcRMI.getInitialReference();
myCounter.increment(1);

Figure 4. Binding the applet in the host appli-
cation (cardAccessor has been previously
initialized using the Open Card framework)

The programmer needs to apply specific memory allo-
cation strategies. For instance, a method should avoid,
at all cost, allocation of objects, as there is no available
garbage collection mechanism. Thus, object alloca-
tion is usually restricted to the constructor. Also Java
Card provides a special exception mechanism, where
the cause of an exception is a short value instead of
a string as in Java. This mechanism is optimized to
avoid multiplicating the number of exception objects
in the card memory.

data coherency The smart card may be physically re-
moved from the card acceptance device at any time,
causing a power failure and interrupting the execution
of the virtual machine. To avoid that objects get into
inconsistent states, Java Card provides a transaction
mechanism that guarantees atomicity of execution (at
a cost). In addition, objects may be specified as being
persistent (maintain their value when power is turned
off) or transient (are reinitialized when power is turned
off).

3. Software development with B

The B method for software development [18, 1] is based
on the B Abstract Machine Notation (AMN) and the use
of formally proved refinements up to a specification suffi-
ciently concrete that programming code can be automati-
cally generated from it.

Its mathematical basis consists of first order logic, inte-
ger arithmetic and set theory, and its basic constructs con-
cerning them are very similar to those of the Z notation
[13]. Its structuring constructs are however stricter and
more closely related to imperative modular programming
language constructs, with the intention of being more easily
understood and used outside the academic world. Also, its
more restrictive constructs simplify the job of support tools.
Industrial tools for the development of B based projects
have been available for a while now [6, 2], with specifica-
tion and verification support as well as some project man-
agement tasks and support for team work. Its modular struc-
ture and characteristics make it adequate for the specifica-
tion of Application Programming Interfaces (APIs) or other
software components.

3.1. The B method

A B specification is structured in modules which are
labeled according to their abstraction level: MACHINE,
REFINEMENT or IMPLEMENTATION, from the most ab-
stract to the most concrete. The development process starts
with one or more MACHINEs, which may be refined into
REFINEMENTs (optional) and then into IMPLEMENTA-
TIONs. The original abstract MACHINEs are to be proved



consistent with respect to some specified properties (par-
ticularly, the INVARIANT of each MACHINE) and then,
each refinement step has to be proved correct with respect to
the corresponding machine. The IMPLEMENTATIONs are
then checked for compliance with the code generator for a
particular language and, if it is the case, programming code
may be generated. Assuming the correctness of the code
generator, the generated code can be guaranteed to satisfy
the stated properties of the abstract specification (the MA-
CHINEs).

3.2. The B notation

Although we concentrate our introduction to the B no-
tation on the more abstract specification (i.e. MACHINE),
similar comments apply to the remaining levels. A B mod-
ule contains two main parts: a state space definition and the
available operations. It may additionally contain auxiliary
clauses in many forms (parameters, constants, assertions),
but those, essentially for practical purposes (i.e. to promote
modularity, reuse, etc.), and do not extend the expressive
power of the notation. In the remainder, we will restrict our
discussion to the core clauses of the module specification.

The specification of the state components appears in the
VARIABLES and INVARIANT clauses. The former enu-
merates the state components, and the latter defines restric-
tions on the possible values they can take. Essentially, if V
denotes the state variables of a machine, the invariant is a
predicate on V . Let us denote INV such invariant predi-
cate. All verifications carried out throughout the develop-
ment process have the intention of checking that no invalid
state will ever be reached as long as the operations of the
machine are used as specified.

For the specification of the initialisation as well as the
operations, B offers a set of so-called substitutions. These
are “imperative-like” constructions with translation rules
that define their semantics as the effect they have on the
values of any (global or local) variables to which they are
applied. The semantics of the substitutions is defined by
the substitution calculus, a set of rules stating how the dif-
ferent substitution forms rewrite to formulas in first-order
logic. Let S denote a substitution, E an expression, then
[S]E denotes the result of applying S to E.

The basic substitution, denoted v := E(V ), where E
is an expression on variables V , states that, when the op-
eration completes, the value of variable v is E(V ), where
the values of the variables appearing in this expression are
taken when the operation initiates. For instance, an op-
eration that would incrementing a counter variable v can
be specified as v := v + 1. Indeed, the basic substitu-
tion is very similar to the side-effect free assignment con-
struct found in imperative programming languages. Apply-
ing such substitution to an expression consists in substitut-

ing the target variable v with the source expression. For
instance, [v := v + 1]v ≥ 0 = v + 1 ≥ 0. The B notation
provides conditional, non-deterministic, parallel, and other
substitution constructs.

One very particular substitution is the PRE-THEN-END,
which can be used to specify any pre-condition that the defi-
nition of the operation assumes in order to “work properly”.
For instance, a partial operation that increments our counter
variable only up to a certain value v may be specified as
v := PRE v < MAX THEN v := v + 1END . This con-
struct offers the full expressive power of first-order logic
to specify the domain of an operation. It is therefore very
useful to specify the bounds of application of an operation,
within which one expects that the machine will not reach
any invalid state.
Example 1 A very simple example of a B machine is:
MACHINE Counter
SEES Short
CONSTANTS max_val
PROPERTIES max_val : SHORT & max_val > 0
VARIABLES value
INVARIANT

value : SHORT & value <= max_val
INITIALISATION

value := 0
OPERATIONS

increment (n) =
PRE n : SHORT & n > 0 & value + n <= max_val
THEN value := value + n
END;

decrement =
PRE value > 0
THEN value := value - 1
END;

res <-- getValue =
BEGIN

res := value
END

END

This example illustrates the most basic clauses to build
a specification. The machine name is defined in the MA-
CHINE clause. The state variable, named here value, is
typed in the INVARIANT clause and initialized in the INI-
TIALISATION clause. Operations are provided to incre-
ment, decrement and return the current value of the counter.
The constant upper bound of the counter is declared in
the CONSTANTS clause and its value is constrained in the
PROPERTIES clause.

3.3. Proof obligations

To guarantee the correctness of a B module, proof obli-
gations must be generated from the initialization and the
operations clauses, establishing that:

1. the initialization actions take the machine into a valid
state, i.e. the initialization substitution S establishes
the invariant: [S]INV .



2. the machine will not be taken from a valid state into
an invalid one when any of the machine’s operations is
executed as long as the user provided parameters and
the machine variables are such that the pre-condition
PRE for application of the substitution S correspond-
ing to this operation evaluates to true: PRE∧INV ⇒
[S]INV .

Refinements are also subject to verification. The B
method generates proof obligations establishing that the re-
sult of a refinement is compatible with the original specifi-
cation: pre-conditions cannot be weakened, post-conditions
cannot be strengthened, and the invariant must be preserved.

4. Applying the B method to Java Card devel-
opment

Smart cards store software components used by client
applications, also called host applications, that communi-
cate with the card via a card acceptance device. Due to the
limitations of the physical support, the code embedded in
smart cards needs to have a simple structure. In particu-
lar, Java Card imposes stringent restrictions on the Java
language, e.g. excluding complex data types and multi-
threading. This is one of the scenarios for which the B no-
tation is well adapted.

The B method is used to specify the functionality of the
card-side components. However, this would require from
the specifier to get into the details of Java Card specific
communication and security issues. It is possible never-
theless to develop a completely portable B specification of
the application, as if it would execute on the same host as
the client application. If the target platform is Java Card
2.1, then the code generated from the B artifacts needs to
implement the coding and decoding of method calls in the
APDU-based communication protocol to access the card.
We have shown in a previous work an approach to generate
automatically such code from a B specification [8].

When the target platform is Java Card 2.2, then the code
synthesis can take advantage of the Remote Method Invoca-
tion mechanism (RMI) to code at a higher level of abstrac-
tion. Assuming that the specified component can be imple-
mented as a JAVA class with an interface I , our approach
results in the generation of the following components:

• The remote interface, as in Figure 1, contains the dec-
laration of a Java Card method for each operation ap-
pearing in the B specification. This interface provides
the smart card services usable from the host applica-
tions (as in Figure 4).

• The Java Card class, as in Figure 2, provides an im-
plementation of the remote interface and is installed on
the smart card. Each operation specified and refined in

the B specification is implemented, respecting the lim-
itations of the Java Card platform.

• A Java Card applet instantiates an implementation
object. The generation of the applet code is very sim-
ple as it consists in instantiating a template with the
name of the implementation class (see Figure 3).

4.1. Restrictions on the specification devel-
opment

Smart-card aware applications require robust card-side
operations, and are developped using a defensive style of
programming and be prepared to handle all invalid data.
The type system of Java Card provides a limited support to
check the pre-condition on the input parameters of the op-
erations and must be complemented with conditional con-
structs to test the parameter values and, possibly, generate
run-time exceptions.

Also, due to the limitations of Java Card, we initially
assume that the interface of the component under develop-
ment satisfies these limitations, in particular regarding the
available data types. Thus, some restrictions on the B ma-
chine and its successive refinements apply:

1. The B integer variables must be restricted to the range
of some Java Card integer type: byte, short. The int
type is not supported in all Java Card implementa-
tions, for this reason it should not be used in a B speci-
fication. We provide the specifier with B machines that
model the basic Java Card data types.

2. The B implementation must respect the Java Card
limitations. For instance, a generated class can have
at most 256 public or protected static fields [14] and,
consequently, a B machine must obey this restriction.

4.2. The development process

The process proposed in this paper starts from an initial
B specification (a B MACHINE) of the desired API. Let
us call it API.mch. This machine is then submitted to a
refinement/implementation sequence:

1. B conditions on variables, parameters and constants do
not provide a clear distinction between typing and fur-
ther semantics restrictions. In this first step, we re-
quire that the user produces a refinement of API.mch,
named APItype.ref, making a clear syntactical
separation of these different concerns (Section 4.2.1).

2. Then, based on this separation, the user shall write a re-
finement of APItype.ref, named APIfull.ref,
with full-function behaviors, i.e., all operations have
minimum pre-conditions (only typing restrictions) and



deal internally (through exceptions) with all the po-
tential problems of invalid data and actions. A by-
product of this phase is the definition of an additional
machine, named UserException.mch, specifying
the exceptions data (Section 4.2.2).

3. The next step introduces the architecture of the
remote invocation mechanism. The refinement
APIfull.ref is used to generate a new refinement,
called APIhost.ref, that models the RMI wrap-
per class on the host-side, and a new machine, called
APIcard.mch, to model the implementation class
on the card-side (Section 4.2.3).

4. As usual in the B method, other refinement steps may
be needed to make the substitutions that define the op-
erations directly translatable into Java Card code.

The relations among these different artifacts are depicted
in Figure 5; the details of the method will be illustrated on
the machine of Example 1.

4.2.1 Refinement for typing

Due to the platform requirements, the implementation needs
to be full-function. In B, this corresponds to so-called min-
imal preconditions, which only define typing of data. How-
ever, B does not distinguish typing constraints from other
semantic restrictions in the different clauses specifying the
possible values of machine data (e.g. variables, parameters,
etc.). When a B implementation is translated to a program-
ming language implementation, the type-related constraints
are mapped to types, whereas the remaining conditions are
omitted, as they were shown preserved throughout the re-
finement process.

So it is common practice that the user of the B method
separates typing concerns from other semantic restrictions.
In our method, we expect that this is done in the first refine-
ment step. The user needs to rewrite the clauses constrain-
ing data so that typing conditions are represented as atoms
that do not contain any other restriction.

Example 2 The typing refinement of the Counter ma-
chine (Example 1) is given below.

REFINEMENT Countertype
REFINES Counter
PROPERTIES max_val : SHORT & max_val > 0
VARIABLES value
INVARIANT

value : SHORT & 0 <= value & value <= max_val
INITIALISATION

value := 0
OPERATIONS

increment(n) =
PRE n : SHORT & n > 0 & value + n <= max_val
THEN value := value + n
END;

B refinement

B refinement

API.mch

UserException.mchAPIfull.ref

APItype.ref

SEES

APIcard.ref
IMPORTS

SEES

APIhost.ref

Figure 5. Full function refinement of an API
machine

decrement =
PRE value > 0
THEN value := value - 1
END;

res <-- getValue =
BEGIN
res := value

END
END

4.2.2 The full function API

The full-function machine APIfull.ref refinement is
required in order to have a more robust specification for the
API. The original abstract machine API.mch may only de-
fine the main behaviour of each API operation, stating op-
eration’s preconditions that have to be satisfied in order to
have a correct (invariant preserving) execution of the ma-
chine. This kind of non-robust behaviour is in general not
allowed in Smart Card applications, and is certainly not the



standard style of programming used by Java Card devel-
oppers.

Java Card programming style includes internally val-
idating all parameter data for each operation, and excep-
tion raising each time a non-conformance is detected. Thus,
the specification developer generally needs to define and in-
clude such “ invalid argument” exceptions. We recommend
that a UserException machine is defined and included
in the refinement. This machine contains an operation to
raise an exception (throw it, used in APIfull.ref),
and the set REASON and is automatically generated from
a list of exception names, provided by the user, and cor-
responding to the non-typing preconditions of the previous
refinement (APItype.ref). At the UserException
implementation level, these constants will be implemented
by natural values and, when generating the remote interface,
a short constant declaration is generated for each excep-
tion element of the REASON set (see Figure 1).

Example 3 If we consider the specification of Example 2,
its refinement would look like:

REFINEMENT Counterfull
REFINES

Countertype
SEES

UserException
VARIABLES

value
INITIALISATION

value := 0
OPERATIONS

increment (n) =
PRE n : SHORT

THEN
IF not(n > 0) THEN throw_it(iarg)
ELSIF not((value + n) <= max_val)

THEN throw_it(oflow)
ELSE value := value + n

END
END;

decrement =
BEGIN

IF not(value > 0) THEN throw_it(uflow)
ELSE value := value - 1
END

END;
res <-- getValue =

BEGIN
res := value

END
END

The corresponding UserException machine is as
follows.

MACHINE UserException
SETS REASON = {iarg, oflow, uflow}

OPERATIONS
throw_it (r) =

PRE r : REASON
THEN

skip
END

END

This whole step is automatizable from the definition of
the original API machine and from mappings, given by the
designer, between groups of atomic conditions in the pre-
conditions of the machine operations and corresponding ex-
ception names for each group.

Moreover, the reasoning engine employed in the B
method can be used to perform verifications on the chain-
ing of exceptional condition tests. The traditional applica-
tion B method already guarantees the correctness of the re-
finement, and we can additionally verify if the exceptional
conditions are all live (i.e. no condition is subsumed by the
disjunction of the previous conditions).

4.2.3 Introduction of the RMI architecture

The next step introduces the architectural RMI aspect into
the design. The refinement APIhost.ref defines the
host-side component. It wraps the instantiations of the
card-side operations, now defined in a new machine, named
APIcard.mch. The APIcard.mch machine is derived
from APIfull.ref by renaming the operations of the
API. Since this transformation only adapts the operations
names, it is fully automatable. Note that here we do not
strictly follow the B development process as the result of
the translation is a new B abstract machine. Nevertheless,
since the body of the operations in the card-side machine
is unchanged, and since the operations in the host side re-
finement only instantiate them, the proof of correctness is
trivial and automatically discharged by the current B tools.

Example 4 From the specification of Example 3, the two
specifications below are generated:

MACHINE Countercard
SEES UserException
CONSTANTS max_val
PROPERTIES max_val : SHORT & max_val > 0
VARIABLES

value
INVARIANT

value : SHORT & 0 <= value & value <= max_val
INITIALISATION

value := 0
OPERATIONS

increment_cs (n) =
/* same as increment from Counterfull */
END;

decrement_cs =
/* same as decrement from Counterfull */

res <-- getValue_cs =
/* same as getValue from Counterfull */

END

IMPLEMENTATION Counterhost
REFINES Counterfull
IMPORTS Countercard



OPERATIONS
increment (n) =

BEGIN
increment_cs(n)

END;
decrement =

BEGIN
decrement_cs

END;
res <-- getValue =

BEGIN
res <-- getValue_cs

END
END

The card-side machine may be further refined, following
the rules of B, eventually resulting in the B implementation
corresponding to the code that is to be embedded in the card.

4.2.4 A note on the data types in the interface

For sake of usability and portability, it is desirable that the
data type restrictions stated in Section 4.1 are lifted (or at
least relaxed). Indeed, the original B specification may in-
clude operations with interfaces (parameters and results)
that do not use the pre-defined models of Java Card data
types. Since B requires that refinement preserve observable
behavior, including the data type of parameters, it is not al-
ways possible to directly map a B machine to a Java Card
implementation.

In case the machine interface does not use models of
Java Card data types, once the full-function refinement
has been produced, the designer needs to specify further re-
finements on the host side of the two-tier architecture pro-
posed in Section 4.2.3. This first tier is responsible for the
conversion between arbitrary Java data types and the Java
Card compliant data types in addition to the remote invo-
cation of the card-located operations, while the second tier
keeps its original role to define the operations that are to be
executed on the card. The refinement realized by the de-
signer will generate an operation that adheres to the follow-
ing template, where convert defines conversion between
Java and Java Card. Note that in this situation, the proof
of correctness is more complex than in the case reported
in Section 4.2.3, as the card-side operations may no longer
have the same body as the refined operations.

results <-- operation (parameters) =
VAR jc_parameters, jc_results IN
BEGIN

convert(parameters, jc_parameters);
jc_results := operation_cs(jc_parameters);
convert(results, jc_results)

END;

This first tier is then implemented in Java software and
executed on the host side, while the second tier is synthe-
sized in Java Card code, running on the smart card.

4.3. Java Card code generation from the B
modules

The previous sections describe how, given a generic B
machine specifying an API, it is possible to generate a B im-
plementation that includes data conversion and communica-
tion aspects of the Java Card platform. The generation of
Java Card code from the B implementation level has been
studied previously [17] and an open-source prototype im-
plementation is available. This tool is a Java code generator
that can be configured to respect some Java Card restric-
tions. However the code synthesis algorithm implemented
in this tool needs further work to take into account the mem-
ory allocation and data consistency issues discussed in Sec-
tion 2.3, using the following approaches:

memory allocation Different coding strategies of the same
algorithm generate different quantities of bytecode:
an if statement might be advantageously replaced by
a switch statement, factoring different occurences of
equivalent code may be factored into a private func-
tion, several accesses to the same array position can
be substituted to a single access stored into a variable,
etc. The tool shall be able to try different codifica-
tion strategies and choose the best one. Also, to reduce
memory usage at run-time, it is important to detect the
memory requirements of the different operations. If
two or more operations require creating the same kind
of object, instead of multiple allocations of the object,
a single instance of the object can be added to the state
of the applet and referenced from each of the corre-
sponding method.

data consistency Java Card applets are, by default, main-
tained as a persistent objects in the persistent memory
of the card. The body of a method that requires modi-
fication of the state of the applet needs to be encapsu-
lated as a transaction. Such situations are identified, at
the level of the B source code, whenever a state vari-
able is the target of a substitution.

As future work, we plan to extend this tool with the ideas
presented in this paper.

5. Related work and conclusions

The main contribution of this work is to provide sup-
port for a rigorous development of Java Card components
for smart card aware applications, based on the B method.
Furthermore, we want to hide as much possible the idiosyn-
cracies of Java Card and smart cards. To achieve this goal,
we proposed that the specification focuses on the so-called
application logic and ignores the aspect related to the im-
plementation of the component required to implement the



Java Card communication protocol. As such the specifica-
tion remains generic enough to be refined and implemented
towards other platforms.

Related work and tools concerning the generation of im-
perative (C, ADA) code from B specifications, e.g., [6, 2, 4],
have been around for a while. The generation of object ori-
ented code or models is however still a matter of current
research as in, e.g., [10, 7, 16], where the translation from
B specifications into UML diagrams is studied. Recently,
a Java code generation tool has been developed [17]. This
tool is also a product of a Smart Card development project
(Projet BOM1), and it takes care of some memory use opti-
mization issues. Our work builds upon this previous work.
However, in this previous work, code generation is exe-
cuted from an implementation-level B module that is al-
ready very close to the Java Card implementation, and the
generated code needs to be manually modified to incorpo-
rate the communication and codification aspects particular
to the Java Card platform. Our proposal is to provide au-
tomated support to generate such B IMPLEMENTATION
from a generic specification, as it will be viewed by the host
application on the terminal side. Thus, all Java Card and
protocol specific data and methods are automatically gener-
ated from the API’s specification. Currently, the method has
the capability to produce Java Card code from a restricted
subset of B specifications with minimal user intervention
(explicit typing and functional conditions). In this context,
the B abstract machine notation can be seen as a high-level
language for smart card component development.

The proposed refinement and code generation method is
composed of two steps: first, a complete B specification
with the Java Card aspects is produced, allowing for spe-
cific verifications to be carried out; only then, Java Card
code will be generated. This second step may be partially
carried out with existing tools ([17]). We are currently pro-
totyping the ideas presented in this paper, i.e. building a tool
that implements all the steps that we identified as automat-
able, and apply them to different case studies. Also, as work
in progress, we are now developing a repository of B models
of Java data types as well as their mapping to Java Card
data types, to relieve the designer from the burden of speci-
fying such conversions. We also plan to investigate security
and authentication aspects within the proposed process.
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