
Edition 1
Revision 0
Number of pages 28
Status Review

Third-Party Provers in Atelier B:

Manual

Redaction Verification Approval
Nom D. Déharbe
Date

Revision Table
Version Date Contributors Contribution
1.0 xx/02/2021 D. Déharbe (Clearsy) Initial version

Contents

1 Introduction 5

2 Principles 7
2.1 Proof mechanisms . 7
2.2 Trust issues . 8
2.3 Disproving . 8

3 Atelier B Assets and Configuration 9
3.1 Third-party provers . 9
3.2 Writers and Readers . 10
3.3 Proof mechanisms . 10

3.3.1 Available proof mechanisms . 10
3.3.2 GUI Tool Bar Configuration . 11

4 Project-level Configuration 15
4.1 Migrating a project to NG mode . 15

4.1.1 Setting a project in NG mode in the GUI 16
4.1.2 Setting a project in NG mode in the CLI 16

4.2 Managing Proof Mechanisms . 17
4.2.1 Managing Proof Mechanisms in the GUI 17
4.2.2 Managing Proof Mechanisms in the CLI 17

5 Using External Provers in the GUI 19
5.1 Proving . 19
5.2 Replaying proofs . 20
5.3 Concurrency . 20
5.4 Metrics . 20

6 Using External Provers in the CLI 23

3

Third-Party Provers in Atelier B

A XML Format for Proof Mechanisms 25

B Creating New Proof Mechanisms 27
B.1 Constraints on writer tools . 27
B.2 Constraints on reader tools . 28

Version 1.0 4/28

Chapter 1

Introduction

Since version 4.7 of Atelier B, third-party automatic theorem provers can be used to discharge
the generated proof obligations. This document presents this new feature.

• Chapter 2 presents the framework that has been designed to integrate external provers
capabilities in B-based development processes. The remaining chapters refer to concepts
presented in this part of the document, so read it first entirely before proceeding to the rest
of the document!

• Third-party provers are not distributed with Atelier B and needs to be installed separately.
Interacting with them requires to convert proof obligations to their format and to interpret
their output to update the status of the proof obligations. Chapter 3 describes the compo-
nents and settings in Atelier B that perform such interaction.

• Each project needs to be set up to allow for the use of external provers. This configuration
is described in 4.

• The GUI of Atelier B has been modified to use external provers. The available functional-
ities are described in 5.

• It is also possible to use external provers in the CLI program bbatch. The available com-
mands are described in 6.

The external prover integration framework is flexible. It is possible to customize the exist-
ing framework and even to extend it by connecting new provers. Appendices A and B contain
technical resources necessary for such customizations and extensions.

5

Third-Party Provers in Atelier B

Version 1.0 6/28

Chapter 2

Principles

Atelier B is capable of integrating third-party automatic theorem provers, with different input
and output formats. The use of external provers is optional and is defined at the project level.

2.1 Proof mechanisms
All the interactions with external provers is realized with so-called proof mechanisms. So a
proof mechanism essentially packages an external prover so that it may be applied to the proof
obligations of a component.

When the user applies a proof mechanism to a component, all the proof obligations in that
component that are still unproved are passed to the external prover and the result of the external
prover are used to update the status of these proof obligations.

Actually a proof mechanism can package several external provers, or several calls to the same
external provers, with different parameters. Then they are applied in turn, only on the remaining
unproved proof obligations.

Since the external provers do not know the format of the proof obligations in Atelier B, these
need to be first translated to one of the input format of the external prover. Also, each external
tool may have a different output format. So, Atelier B needs to be able to interpret such output
to update the status of the proof obligations. These needs are addressed in a proof mechanism by
embedding the call to a prover into a so-called driver.

A driver is composed of three elements:

prover The third-party automatic theorem prover.

writer The program translating proof obligations to the input format of the prover

reader The program interpreting the prover output.

7

Third-Party Provers in Atelier B

So, a proof mechanism is essentially a sequence of such drivers. Most proof mechanisms
packaged with Atelier B contain only one driver though.

2.2 Trust issues
The B method is essentially used industrially to develop safety-critical software components. As
such, it is necessary that the tools are qualified according to the role they have in the development
process.

If a proof mechanism is not qualified, it can still be used in Atelier B, e.g. because it makes
it easier to identify proof obligations that are still wrong (because the design is not finished)

When a proof mechanism is thus not qualified, then the proof obligations that are proved with
it are classified as Unreliably Proved, a new proof status in Atelier B. When a proof obligation
has this status, then it is highly probable that it is provable. In the design phase where some parts
of the components are not finished, this makes it easier to identify which proof obligations are
not yet provable.

2.3 Disproving
Some automatic theorem provers are not only able to prove, but also to disprove. When a proof
obligation is not valid, and an external prover is able to show that it is not valid, then the status
of the proof obligation is Disproved. This indicates directly that there the B component being
verified has an error.

Version 1.0 8/28

Chapter 3

Atelier B Assets and Configuration

3.1 Third-party provers
Atelier B is distributed with proof mechanisms that use the following third-party automatic the-
orem provers:

• CVC4: joint project of Stanford University and University of Iowa. Available under the
BSD 3-clause license.

• Z3: from Microsoft Research. Available under the MIT License.

These provers are not distributed together with Atelier B, but they may be downloaded them
from their respective web sites for a variety of platforms. Their use is subject to their respective
licences.

To use a proof mechanism, the referenced prover(s) must be installed separately.

The proof mechanisms use Atelier B resources to access the thirdy-party provers. When such
a prover has been installed, its path shall be used to set the corresponding resource. The resources
are the following :

• CVC4: ATB*Proof*CVC4

• Z3: ATB*Proof*Z3

As with other resources, they may be set at the installation level and at the project level, in the
AtelierB file.

To use a proof mechanism, the resource corresponding to the prover(s) must be
set.

In case the prover requires a dynamic library at execution-time, the path to the library must
be added in the execution environment of Atelier B. This procedure is platform-dependent.

9

Third-Party Provers in Atelier B

3.2 Writers and Readers

Atelier B is distributed with programs that play the role of writer and reader in proof mechanisms.
Each writer has an associated reader. They are:

• ppTransSmt and smt_solver_reader are companion tools for any provers compli-
ant with the SMT-LIB 2.6 format, e.g. CVC4 and Z3. The writer handles all the operators
of the B language.

• pog2smt and simple_smt_solver_reader are companion tools for any provers
compliant with the SMT-LIB 2.6 format, e.g. CVC4 and Z3. The writer handles only
those operators of the B language that have an equivalent in an SMT-LIB logic.

Further details on writers and readers may be found in appendix B.

3.3 Proof mechanisms

3.3.1 Available proof mechanisms

The proof mechanisms are defined as XML-based files that are stored in the proof mechanism
directory, i.e. the directory press/pm of the distribution.

The following table lists all the proof mechanisms that are available with the distribution,
together with the resources they depend on.

proof mechanism resource
cvc4_ddrp1_pp ATB*Proof*CVC4
cvc4_pp ATB*Proof*CVC4
cvc4_simple ATB*Proof*CVC4
smtlib_simple ATB*Proof*CVC4 and ATB*Proof*Z3
smtpp_rp0 ATB*Proof*CVC4 and ATB*Proof*Z3
smtpp_rp1 ATB*Proof*CVC4 and ATB*Proof*Z3
z3_ddrp1_pp ATB*Proof*Z3
z3_pp ATB*Proof*Z3
z3_simple ATB*Proof*Z3

Notice that some mechanisms requiring setting two resources. The reason is that these mech-
anisms try up to two automatic provers on each proof obligation.

In addition to providing access to different automatic provers, these proof mechanisms vary
according to two additional features : hypotheses filtering, and logic encoding.

Version 1.0 10/28

Third-Party Provers in Atelier B

Hypotheses filtering This consists in selecting a subset of the hypotheses in the proof obligation
to produce the input of the automatic prover. This selection is based on the fact that,
historically, a proof obligation in B has three parts: global hypotheses (which may be in
the hundreds), local hypotheses and a goal. In the interactive prover, the initial view of a
proof obligation only contains the local hypotheses and the goal. There are four possible
filters:

1. The rp0 filter, where only the local hypotheses and the goal are translated.

2. The ddrp1 filter, that contains the goal plus all the global hypotheses that share a
symbol with the goal.

3. The rp1 filter, that contains the result of the rp0 filter plus all the global hypotheses
that share a symbol with this result.

4. No filter, i.e., all the hypotheses and the goal are translated.

Accuracy This feature provides the possibility to abstract parts of the proof obligation. There
are two levels of accuracy:

1. In the simple case, the set theory operators are left uninterpreted in the input of the
automatic prover. This feature is only available for proof mechanisms embedding
SMT solvers, and is suitable for the proof obligations where no set-based reasoning
intervenes in the demonstration of the goal.

2. In the faithful case, the semantics of all the B operators is preserved in the input of
automatic prover.

proof mechanism filtering accuracy
cvc4_ddrp1_pp ddrp1 faithful
cvc4_pp no faithful
cvc4_simple no simple
smtlib_simple no simple
smtpp_rp0 rp0 faithful
smtpp_rp1 rp1 faithful
z3_ddrp1_pp ddrp1 faithful
z3_pp no faithful
z3_simple no simple

3.3.2 GUI Tool Bar Configuration
Once the proof mechanisms of interests have been identified, the corresponding provers installed,
and the corresponding resources set, these proof mechanisms may be added to the tool bar of the
GUI.

Version 1.0 11/28

Third-Party Provers in Atelier B

For each proof mechanism, an icon may be added to the tool bar. The user will then be able
to use this icon to call the corresponding proof mechanism on the selected components.

To add a proof mechanism icon to the tool bar:

1. Click on the rightmost icon + of the tool bar.

2. An icon creation dialog pops up.

3. Select the proof mechanism from the list.

4. Provide an identifier (up to 4 characters) for this proof mechanism. This identifier will be
used to produce the icon.

5. Click the OK button.

Version 1.0 12/28

Third-Party Provers in Atelier B

6. The icon appears in the tool bar.

Further details on proof mechanisms may be found in appendix B. Also, the description of
the XML-based format for proof mechanisms can be accessed in the Manuals section of the Help
menu in the GUI.

Version 1.0 13/28

Third-Party Provers in Atelier B

Version 1.0 14/28

Chapter 4

Project-level Configuration

At the level of each project, two actions are required to use external provers:

1. Set the project to NG mode (described in § 4.1);

2. Add proof mechanisms to the project (described in § 4.2).

4.1 Migrating a project to NG mode
The use of external provers required to make changes to the structure of the project database in
Atelier B, so once a project has been set up to use external provers, it is not possible to revert this
action automatically.

To use a proof mechanism in a project, the project must be in so-called NG mode.
Once in NG mode, a project cannot be reverted automatically to non NG mode.

When a project is in NG mode:

1. The proof obligation generator is the new proof obligation generator.

2. The primary format for proof obligation files is the XML-based format POG (instead of
the theory language-based format PO).

3. The primary format for proof obligation status file is the XML-based format POS (instead
of the theory language-based format PMI).

4. The files produced by the proof mechanism writers are stored in the database, but are
immediately deleted after they have been used by the provers.

5. The resource ATB*ATB*Project_Mode_NG is set to TRUE.

15

Third-Party Provers in Atelier B

Figure 4.1: Migrating project to NG mode by checking the “Enable external provers”. This
action is irreversible.

Setting the resource ATB*ATB*Project_Mode_NG to TRUE in the AtelierB file of a
project migrates it to NG mode. The GUI and the CLI also provide means to migrate the project
to NG mode.

4.1.1 Setting a project in NG mode in the GUI
To migrate a project to NG mode in the GUI, do the following steps (see also figure 4.1):

1. In the project view, right-click on the project and select “Properties”.

2. Click on the “software development” tab to put it to the foreground.

3. Check the box “Enable external provers”.

4.1.2 Setting a project in NG mode in the CLI
To migrate a project to NG in the CLI, do the following steps:

Version 1.0 16/28

Third-Party Provers in Atelier B

Figure 4.2: The views and buttons for managing proof mechanisms: the list of available proof
mechanisms (left), the button to add a proof mechanism to the project (middle), the list of project
proof mechanisms (right).

1. Open the project (command op).

2. Type the command migrate_project (short form: mip).

4.2 Managing Proof Mechanisms
The proof mechanisms stored in the directory press/pm are not usable in a project until they
have been explicitly added to the project. This section describes how to manage the proof mech-
anisms available in a project.

4.2.1 Managing Proof Mechanisms in the GUI
The proof mechanisms of a project may be managed through the “Properties” dialog, in the
“software development” tab.

External provers management is at the bottom of this tab. On the left, the “Selected” view
lists all the proof mechanisms available in the project. On the right, the “Available” view lists all
the proof mechanisms available in the installation but not in the project. The buttons between the
two views add and remove the selected proof mechanism to the project (see figure 4.2).

4.2.2 Managing Proof Mechanisms in the CLI
The CLI commands to manage proof mechanisms are the following :

add_proof_mechanism m Includes m to the list of proof mechanisms authorized in the current
project.

The files involved are:

• The database file of the project is updated to include the proof mechanism.

• The proof mechanism file m.xml must be present in the proof mechanism directory
(see 3.3).

Version 1.0 17/28

Third-Party Provers in Atelier B

Short form: apm m

remove_prove_mechanism m Removes m from the list of proof mechanisms authorized in the
current project.

The files involved are:

• The project database file of the project is updated to suppress the proof mechanism.

Short form: rpm m

show_project_proof_mechanisms The command lists proof mechanisms authorized in the cur-
rent project.

The information is taken from the project database file.

Short form: sppm

show_proof_mechanisms The command lists all proof mechanisms available in the installation.

The information is taken from the proof mechanism directory (see 3.3).

Short form: spm

Version 1.0 18/28

Chapter 5

Using External Provers in the GUI

The section describes how to use external provers to perform the proof activities in a project.

5.1 Proving

The actions described in this section require that the proof mechanisms have been added to the
tool bar (see section 3.3.2) and that the proof mechanisms have been added to the project (see
section 4.1.2).

To use proof mechanisms for discharging proof obligations on the selected components, click
on the icon corresponding to that proof mechanism.

While the proof mechanism is running on the selected components, the corresponding tasks are
listed in the task view.

19

Third-Party Provers in Atelier B

When the tasks complete, the components view is updated to display the result of the proof mech-
anism. In that example, the proof mechanism is not trusted. So, even though all proof obligations
were shown valid by the proof mechanism, they are counted as Unreliably Proved.

5.2 Replaying proofs
When proof obligations of a component have been discharged thanks to proof mechanisms, and
the component has been unproved, the same proof mechanisms can be automatically applied to
the component thanks to the “external replay” button found in the tool bar.

5.3 Concurrency
The execution of each proof mechanism spawns processes to execute translations and external
provers. By default, the number of concurrently spawned processes is 1, but it is possible to
spawn concurrently more than one process. This is controlled by a following widget located in
the tool bar.

5.4 Metrics
The project status dialog contains an additional tab with the details of the results for each driver
of each proof metrics. The information is displayed in a tabular format as follows:

Version 1.0 20/28

Third-Party Provers in Atelier B

Here the project prep0005 has only a single proof mechanism, called cvc4_pp. This proof
mechanism has a single driver, named cvc4.

Version 1.0 21/28

Third-Party Provers in Atelier B

Version 1.0 22/28

Chapter 6

Using External Provers in the CLI

The following commands are available in the bbatch command-line interface:

extprove c m (0|1) where c is a component; m is a proof mechanism.

Applies the proof mechanism m to the component c. Multiple components can be proved
in a single command using * as a wildcard. The proof mechanism must be authorized in
the current project.

If the third parameter is 1, then only drivers tagged as fast are executed, otherwise all
drivers are executed.

This command reads the proof obligation file of the component, and writes secondary proof
obligation files in a format suitable for the provers used by m. These files are stored in the
directory bdp/m. They are temporary and deleted upon completion of the command.

Short form: xtp

extreplay c [m] where c is a component and m is a mechanism.

If m is provided, the command replays the proof mechanism m on the component c. Oth-
erwise, the command replays all external proof mechanisms already applied to the compo-
nent.

The replay command may be applied to multiple components by using the * wildcard.

Short form: xtr

extmetrics This is a project-level command. It displays a table of proof statuses of each com-
ponent, giving details about the result of each proof mechanism.

Short form: xtm

23

Third-Party Provers in Atelier B

concurrency [m] , where N is an optional positive number.

The concurrency level is the number of concurrent threads used by the commands ‘extprove‘
and ‘extreplay‘ to:

1. write secondary proof obligation files

2. call external provers on these secondary proof obligation files

When N is given, sets the concurrency level.

When N is not given, prints the concurrency level.

The default concurrency level is 1.

It can be set with resource ATB*External_Proof*Concurrency.

Short form: co

Version 1.0 24/28

Appendix A

XML Format for Proof Mechanisms

The XML format for proof mechanisms is defined with an XML Schema named proof-mechanism.
Its current version is 1.0. The documentation for this format is available as an HTML page
in the GUI in the Manuals section of the Help menu. It is also available in the directory
documentation/formats in the installation of Atelier B.

25

Third-Party Provers in Atelier B

Version 1.0 26/28

Appendix B

Creating New Proof Mechanisms

Creating a proof mechanism requires writing an XML file complying with the proof-mechanism
XML Schema (see A). Of course the tools (writer, prover, reader) that compose the driver(s)
making up this schema should also be available (see 2).

We recommend using the extprove command line program, distributed with Atelier B, to
test that a proof mechanism behaves as expected. Indeed, the primary functionality of extprove
is to interpret a proof mechanism on a component.

So it is possible to create new proof mechanisms by reutilizing the tools distributed with Ate-
lier B that implement the translation between Atelier B’s formats and that of existing automated
provers. Such tools target the whyml and SMT-LIB format and it is thus very easy to create new
proof mechanisms with automatic provers recognizing these formats.

It is also possible to target automatic provers recognizing other formats, or to design writer
tools with a different level of accuracy than those currently available. The writer and reader tools
are required to respect a number of conventions so that they are compatible with the algorithm
implementing the evaluation of the proof mechanism in Atelier B.

B.1 Constraints on writer tools

The input of a writer tool should be the file containing the proof obligations of a B component.
Such files are produced by the proof obligation generator in Atelier B and they are compliant
with the pog format. This format is XML-based. The documentation and the XML Schema for
this format are available in the GUI in the Manuals section of the Help menu, and also in the
directory documentation/formats in the installation of Atelier B.

The writer shall recognize the following parameters:

-i ipath The path of the input pog file is ipath.

27

Third-Party Provers in Atelier B

-o opath The resulting translation shall be stored in the file opath (the contents of this file shall
be in the format recognized by the prover).

-a i j The j-th child element tagged Simple_Goal in the i-th element tagged Proof_Obligation
of the input file shall be translated. There might be several such parameters in case the
solver support proving several goals in a single execution.

So each -a parameter given to the writer corresponds to a proof obligation of a component.
The prover is expected to produce one result for each such proof obligation in the same order as
the -a parameters. It is then the role of the reader tool to interpret this result and translate it to a
unique format, as explained in the next section.

B.2 Constraints on reader tools
When the prover is executed on the file produced by the writer, the standard output channel of
the prover is piped to the standard input channel of the reader. For each goal processed by the
prover, the reader shall produce on its standard output channel a single line containing one of the
following strings (and nothing else): proved, disproved and unknown. The order of the
status printed shall correspond to the order of the -a parameters given to the writer.

The status of the component is updated using these strings, according to the policy specified
in the proof mechanism.

Version 1.0 28/28

	Introduction
	Principles
	Proof mechanisms
	Trust issues
	Disproving

	Atelier B Assets and Configuration
	Third-party provers
	Writers and Readers
	Proof mechanisms
	Available proof mechanisms
	GUI Tool Bar Configuration

	Project-level Configuration
	Migrating a project to NG mode
	Setting a project in NG mode in the GUI
	Setting a project in NG mode in the CLI

	Managing Proof Mechanisms
	Managing Proof Mechanisms in the GUI
	Managing Proof Mechanisms in the CLI

	Using External Provers in the GUI
	Proving
	Replaying proofs
	Concurrency
	Metrics

	Using External Provers in the CLI
	XML Format for Proof Mechanisms
	Creating New Proof Mechanisms
	Constraints on writer tools
	Constraints on reader tools

