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Chapter 1

Introduction

System modelisation using the Event B approach is supported by the Atelier B tool. To use this
kind of modelling, the project type System must be specified when a new project is created. A
System project type is made up of three kinds of components:

1. system specification components (files with a x . sy s extension),
2. refinement components (x . re f extension),

3. closing implementation components (* . imp extension.): their purpose is the generation
of proof obligations (PO) allowing for feasibility proof of constants and variables.

The syntax is very similar to that of the B language for the development of software com-
ponent. In this document, we will refer to this latter language as B Software and its reference
manual [6].

The proof obligations to be generated for a system project can be selected through the graph-
ical interface of Atelier B in the settings of the project. These PO include the classical invariant
preservation proofs, which are always generated, the well definedness proofs and optional proof
obligations specific to Event B.

The next sections detail the syntactical particularities of the System components and the
specific Event B proof obligations.
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Chapter 2

Syntax

The syntax of specifications and refinements in a System project is mainly a constrained version
of the syntax of specification and refinements in a Software project of the Atelier B tool.

The following sections detail the syntax of specifications and refinements signalling the con-
straints to be respected with respect to the syntax of B Software.

2.1 Specifications

A system specification must be declared in a component having an * . sys extension.
The syntax of this kind of component is given by the syntactical category [I| which is a con-
strained version of the syntax of the Machine components in B Software{'}

Syntactical Category 1 (System Specification)

System_Specification ::=
SYSTEM Identifier
System_Specification_Clause
END

where

System_Specification_clause ::=
| Sees_clause

| Sets_clause

| Definitions_clause

The syntactical categories specified in this document are given in the style of [6]

7
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| Concrete_Constants_clause
| Abstract_Constants_clause
| Properties_clause

| Concrete_Variables_clause
| Abstract_Variables_clause

| Invariant_clause

| Assertions_clause

| Initialisation_clause

| Operations_clause

The current version of Atelier B also allows references to included (with promoted opera-
tions), or extended System specifications, but there is no semantic meaning for these type of
references in Event B models. For this reason a System specification does not consider included
or extended specifications.

The Operations_clause in the list of System_Specification_clause is the only clause where
the syntax is a restriction of the corresponding clause in software projects. All the other clauses
in the list follow the syntax of B Software.

The syntax of the Operations_clause is given by the Syntactical Category [2]

Syntactical Category 2 (System Operation Clause)

Operations_clause ::= (OPERATIONS | EVENTS) Event ™t
Event ::= Identifier = Event_body

Event_body ::= Block_substitution | Identity_substitution | Any_substitution
| Simple_substitution | Multiple_substitution | Select_substitution

The Block, Identity and Any substitutions follow the same syntactical rules as the corre-
sponding substitutions in B Software projects:

BEGIN ANY Identifiert”
Substitution skip WHERE Predicate
END THEN Substitution

END

Version 1.0 8
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where Substitution is any kind of substitution allowed in the Machine components in B Soft-
ware. Simple_substitution and Multiple_substitution also have the same syntactical rules as the
corresponding substitutions in B Software.

The Select_substitution is a restriction of the corresponding substitution in B Software. The
syntax of the Select_substitution is given in the syntactical category

Syntactical Category 3 (Select Substitution)

Select_substitution ::=
SELECT Predicate THEN Substitution
(WHEN Predicate THEN Substitution)*
END

A Select_substitution occuring as the Fvent_body of an event does not allow the ELSE
clause of a Select substitution in B Software. However, inside the Select or When part of the
Select_substitution, the Substitution can be any kind of Machine substitution allowed in B Soft-
ware.

2.2 Refinements

A system specification can be refined through a sequence of refinements declared in components
having the extension * . ref. The syntax of this kind of components is given by the syntactical
category 4 which is mainly a constrained version of the syntax of Refinement components in B
Software.

Syntactical Category 4 (Refinement Specification)

Refinement_Specification ::=
REFINEMENT Identifier
REF INES Identifier

Refinement_Clause
END

where

Refinement clause ::=
| Sees_clause

Version 1.0 9
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| Sets_clause

| Definitions_clause

| Concrete_Constants_clause
| Abstract_Constants_clause
| Properties_clause

| Concrete_Variables_clause
| Abstract_Variables_clause
| Invariant_clause

| Variant_clause

| Assertions_clause

| Initialisation_clause

| Operations_clause

The Variant_clause in a refinement component is a new clause which does not exist in B
Software refinements. The syntax of this clause is given by the syntactical category [S}

Syntactical Category S (Variant Clause)

Variant_clause ::= VARIANT Expression

where Expression in this Variant_clause is an expression of NATURAL type, similar to the Ex-
pression in the Variant clause of a While substitution in B Software. The Non-Divergence proof
obligation, stated in the next section, uses this Expression to prove that new events in the current
refinement only introduce bounded stuttering steps.

The Operations_clause is the only refinement clause whose syntax differs from B Software.

The refinement Operations_clause is almost the same as the system Operations_clause stated
by the syntactical category 2l The only one difference is the non terminal symbol Event which
is defined by the following syntactical category:

Syntactical Category 6 (Refined Events)

Event ::= Identifier [re £ Identifier™ "] = Event_body

The keyword ref can be used in three different ways:

1. Rename events

Abstract Event Concrete Event
Event_a = Substitution Event_c ref Event_a = Substitution

Version 1.0 10
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The abstract event Event_a is refined by the concrete event Event_c with the same or
a different Substitution.

2. Split events

Abstract Event Concrete Event
Event_a = Substitution Event_cl ref Event_a = Substitution,

Event_c2 ref Event_a = Substitutions

The abstract event Event_a is refined (split) by two concrete events Event_c1l and
Event_c2.

3. Merge events

Abstract Events Concrete Event
Event_al = Substitution, Event_c ref Event_al, Event_a2
Event_a2 = Substitution, Substitution

The abstract events Event_al and Event_a?2 are refined (merged) into the concrete
event Event_ c.

It must noted that the merge of events in the Atelier B implementation of Event B is more
general than the merge of events as presented by the creator of Event-B [2]]. In Atelier B,
the bodies of the abstract events are not necessarily the same.

Events in the Operation_clause of a refinement are partitioned into two sets: implicit events
(I/F) and explicit events (~F). The set £E contains explicitly refined events as well as new events
appearing in the current component. The set /£ is equal to the set difference RE — E'E, where
RE denotes all the events (explicit and implicit) of the component referenced by the REFINES
clause, if any, or all the events in a system specification otherwise.

When an abstract event, named « is refined through the re f keyword, by a concrete event,
named c, the Operation_clause of the refinement contains, among others, the abstract event a
(implicit event) and the refined one ¢ (explicit event). The Proof Obligation Generator treats the
implicit and explicit events in the same way, generating Invariant Preservation PO for both kind
of events. To avoid the proof obligation generation for an implicit refined event, it must be closed
by a miraculous substitution as stated by the Definition [T}

Definition 1 (Closed Event)

An abstract event Abstract is closed by declaring it as miraculous substitution as follows:

Version 1.0 11
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Abstract = SELECT 0=1 THEN skip END

The last syntactical category introduced in the refinement of Event B models implemented by
the Atelier B is a new substitution named Witness. The rationale for this substitution comes from
the Event B reference in [2]] where refined events contain the with clause to denote a witness in
the refined event for each disappearing parameter of the abstract event and for each disappearing
abstract variable assigned in a non deterministic way in the abstract event.

The implementation of the Witness substitution in Atelier B is a weak form of the with clause
implemented in the Rodin platform [9]. In Atelier B, the witness is only used for each disappear-
ing parameter of a refined ANY substitution. Moreover, only deterministic witnesses are allowed
in the Atelier B through equality predicates. The Witness substitution is not mandatory.

The syntax of the Witness substitution is given in the syntactical category

Syntactical Category 7 (Witness)

Witness_substitution ::=
WITNESS (Identifier = Expression)t &
THEN Substitution
END

where Identifier is a variable declared in the abstract event not appearing in the refined one
and Expression is an expression of the same type as the removed variable.

A Witness substitution should appear in the body of refined events, for example :

BEGIN
WITNESS xx = ee THEN Substitution END
END

or
SELECT Expression THEN
WITNESS xx = ee THEN Substitution END
END

or

ANY yy WHERE Predicate THEN
WITNESS xx = ee THEN Substitution END
END

Version 1.0 12



Chapter 3

Proof Obligations

This section presents Event B Proof Obligations (POs) implemented in Atelier B. First, the
mandatory POs for splitting or merging events are commented. Then five subsections describe
the following optional proof obligations:

e Feasibility PO.

e Deadlock freedom PO.
e Non divergence PO.

e Exclusiveness PO.

e Coverage PO.

The feasibility, deadlock freedom and exclusiveness POs apply to system specifications and re-
finements. Non Divergence and Coverage POs apply only to system refinements. The POs are
presented together with an explanation of their usefulness in the context of a system specifica-
tion or refinement. In the appendices and these POs are also given in terms of XPATH

expressions of IBXML documents [[7]].

3.1 Refinement Proof Obligations

The syntactical category [f|concerning the refined events introduces the re f clause. As indicated,
this keyword can be used in three different ways to rename, split or merge abstract events.

1. Renaming events is not different from the classical refinement in the B Method, for this
reason it is not commented here.

13
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2. The split of an abstract event a into a set of refined ones ref (a) leads to the generation of
refinement POs to demonstrate that a is refined by each ¢’ in ref (a); as it is also a classical
refinement, it is not further commented in this section.

3. The PO for merging abstract events is mandatory and is always generated for the Atelier
B.

A set of abstract events can be merged into a concrete event. In this case, it must be proved
that the choice of abstract events is currently refined by the concrete one as stated by the
proof obligation

Proof Obligation 1 (Merge Refinement Correctness)

Let ¢ be an event in a system refinement with invariant J refining through its ref
clause a set of abstract events aq, . .. a, in an system specification or refinement with
invariant /. The Merge Refinement correctness proof obligation is:

ctt NI NJF[c] - [CHOICE a; OR...ORa, END| =J

where ctz is the proof context.

It must be noted that in the case of guarded commands (SELECT substitutions without
WHEN-THEN clauses) having the same body, PO [I] becomes equivalent to MRG Proof
Obligation in [2].

The mandatory proof obligation to prove the correctness of new events introduced in a re-
finement is given in section [3.4] page[18]

3.2 Feasibility Proof Obligation

In Event B [2]], the guard concept denotes the predicate, built on the sets, constants and variables
of a system or refinement, representing the necessary conditions for an event to occur. The
constraints in the syntax of events in [2]] exhibit the guard of events in a explicit way.

However, the syntax of events in the Event B implementation of Atelier B, according to the
syntactical category [2] allows embedded arbitrary substitutions in the body of the Block, Any and
Select substitutions. Therefore, in Atelier B, two guards concepts are introduced : explicit and
implicit guards.

The explicit guard of an event is a syntactic guard, defined according to the substitution
defining the event. For the Block and Identity substitutions, the explicit guard is defined by
true. For Select substitutions with only one guarded command, that is, no WHEN clause at

Version 1.0 14
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all, the explicit guard is the guard of the guarded command. If the Select substitution contains
WHEN clauses, its explicit guard is true. Finally, the explicit guard of the Any command, is the
predicate of its WHERE clause, existentially quantified over the Any variables. The definition of
the explicit guard is given in definition [2]

Definition 2 (Explicit Guard)

For any Substitution s its explicit guard grd(s) is defined as follows:

P if s= SELECT P THEN S END
grd(s) = ¢ 3Jx-(P) if s = ANY x WHERE P THEN S END
true for any other type of Substitution s

It should be noted that the explicit guard grd(s) of an event e, defined by the substitution s,
does not represent the necessary conditions for e to occur, since to do so, it needs to have enabled
all the guards of the embedded guarded commands in s. The necessary condition for event e to
occur is its implicit guard, defined in definition [3] [[1]].

Definition 3 (Implicit Guard)
For any Substitution s its implicit guard fis(s) is defined as follows:

fis(s) = = [s] false

The explicit and implicit guards are related through the Property [I]

Property 1
For any Substitution s, the implicit guard is stronger than or equivalent to the explicit guard:

fis(S) = grd(S)

Property [I]is proved by structural induction in the structure of S. If S is the Select substitution
defined in definition 2} its implicit guard is P A — [S] false which implies the explicit guard. If
S is the Any substitution defined in definition[2] its implicit guard is 3z - (P A — [S] false) which
implies its explicit guard. In any other case of the structure of S its explicit guard is defined as
true, which is implied by any predicate and in particular by fis(.S).

Version 1.0 15
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As an example of the instantiation of property |1} if fis(.S) is equal to true, where S is the
substitution in definition 2] the explicit and implicit guards of the Select and Any substitutions of
that definition are equivalent. However, having a substitution S as follows:

S = SELECT P, THEN S; WHEN P, THEN S, END

where fis(S;) = fis(S5,) = true, we have fis(S) = P, V P, and grd(S) = true; in this case we
have fis(S) = grd(S). If the converse of this implication is proved, that is grd(S) = fis(.5), it
means that the explicit and implicit guards are equivalent.

Apart from allowing the equivalence proof between the explicit and implicit guards, the con-
verse of the implication fis(S) = grd(S) defines the Feasibility PO of events in an Event B
model. This proof obligation states, from a logical point of view, that an event is not able to
establish any post-condition, that is, it is not miraculous, when it occurs in a state satisfying its
external guard. From an operational point of view, it states the existence of a state reached after
the event occurs in an state where its explicit guard holds. The Feasibility PO is therefore defined
as follows:

Proof Obligation 2 (Feasibility Proof Obligation —FI1S-)

For any event I of a System Specification or Refinement, the Feasibility Proof Obligation
Is:
ctx - (grd(E) = fis(F))

where ctz is the proof context of the Specification or Refinement.

The PO [2] with its proof context ctz is formally defined in section [B.2.1] of the appendix for
system specifications and section for system refinements. It should be noted that PO [2|is
equivalent to the proof obligation avt/act/FIS defined in [2].

The resource to be set in the Atelier B for generation of the Feasibility PO is the following:

Resource 1 (Feasibility Proof Obligation)

ATB*POG+Generate_EventB_Feasibility_PO

3.3 Deadlock Freeness Proof Obligation

In the case of a system specification reaching a state where no event can occur, that state is known
as a deadlock state.

Version 1.0 16
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In order to ensure that a system specification will never reach a deadlock state, the Deadlock
Freeness Proof Obligation is defined to guarantee that at least one event of the system can occur
at any reached stated:

Proof Obligation 3 (Deadlock Freeness Proof Obligation —DLF-)

Let E be the set of events in a system specification, / the invariant of the system and ctz the
proof context. The Deadlock Freedom PO is:

cte N1+ 3Je- (e € EAgrd(e))

where grd(e) denotes the explicit guard of e given in definition

To be meaningful, this Proof Obligation needs the FIS PO to be proved.

If FIS POs are proved, it is guaranteed that the explicit guard of any event in the system is
equivalent to its implicit guards, and therefore the DLF PO effectively guarantees that the system
does not reach a deadlock state. This PO and its ctz proof context are formally defined in section
of the appendix.

The refinement of an abstract event by a concrete one has a consequence that the implicit
guard of the refined event becomes stronger than the implicit guard of the abstract one. Therefore,
if the DLF PO has been proved in a system, it is not guaranteed that its refinement does not reach
a deadlock state. In order to guarantee that the refined system does not deadlock more often that
the abstract one, it must be proved that the implicit guard of any abstract event guarantees, at
least, the implicit guard of a refined or new event. The PO to guarantee that a refinement does
not deadlock more often than the abstract one is known as Relative Deadlock Freedom PO:

Proof Obligation 4 (Relative Deadlock Freeness PO —DLF-)

Let C' be the set of events in a system refinement with invariant J and A the set of events
contained in the component referenced by the REFINES clause of the refinement and [ its
invariant. The Relative Deadlock Freedom PO is:

ctt NINJEVYe-.(e€ AAgrd(e) = 3’ - (' € C A grd(€)))

where grd(e) and grd(e’) denote the explicit guard of events given in definition 2| and ctz
the proof context.

Version 1.0 17
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To be meaningful, this Proof Obligation needs the FIS PO to be proved.

This PO and its ctz proof context are formally defined in section [B.3.3] of the appendix.

The Deadlock Freeness PO and the Relative Deadlock Freeness PO are equivalent to the DLF
proof obligation defined in [2].

The Atelier B resource to enble the generation of the Deadlock Freeness POs is:

Resource 2 (Deadlock Freeness Proof Obligation)

ATB*TC+xEventB_DeadlockFreeness

3.4 Non Divergence

Apart from Data Refinement, which is the classical refinement in the B method [1]], Event B
allows Atomicity Refinement through the introduction of new events [2]. These new events must
satisfy two conditions:

1. They are not allowed to modify the abstract state.
2. They are only allowed to introduce bounded stuttering steps.

The first condition constrains the effect of new events to the components where they are intro-
duced and their refinements. The second guarantees that any trace of the refinements cannot
contain infinite sequences of new events.

A classical use of atomicity refinement is the decomposition of the execution of an abstract
event A into a series of refined steps H, H,H, .. .,C, as depicted in the following scheme:

S; A Sit1

————» ————@
ti H ot H Lz H i € tjian

In this scheme, the abstract event A is refined by the concrete one C while a new event H is
introduced. It is supposed that A transforms the abstract state s; into s;; whereas C transforms
the refined stated ¢;,, into ¢;;,1. The departure state of the abstract event is linked by the
gluing invariant to the departure state of the refined one and the arrival state of A is linked to
the arrival state of C through the same invariant; it is denoted by the dashed lines in the scheme.
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The execution of new events modifies the refined state through a sequence of transformations
tj,...,tj+n. All these transformations are linked to the abstract state s; by the gluing invariant,
meaning that no state transformation is perceived in the abstract state. Moreover, the sequence
of transformations is finite, taking at most n steps, starting in a refined state ¢; and leading to a
final state ¢;.,,, where the refined event C can start its execution.

Event B defines two kinds of POs to ensure that new events satisfy the two conditions pre-
viously stated. For the first condition, in order to avoid abstract state modifications, each new
event H must refine the identity substitution Skip:

Proof Obligation 5 (Skip Refinement Correctness)

Let H be a new event in a System Refinement with invariant .J refining an abstract system
with invariant /. The Skip Refinement Correctness PO is:

cte NI N JF [H] - [skip] =J

where ctz is the proof context.

In Atelier B, PO[5]is mandatory and is always generated when a new event is introduced in a
refinement. The PO and its ctz proof context are formally defined in section |B.3.4

For the second condition, in order to ensure that new events introduce bounded stuttering
steps, two POs are defined. These POs are stated to guarantee that the variant expression V/,
defined in the Variant clause of refinements introducing new events (syntactical category [3)), is
indeed a natural type expression decremented by any new event:

Proof Obligation 6 (Numeric Variant -NAT-)

Let V' be the expression of the Variant clause in a refinement with invariant J refining an
abstract system with invariant /. The Numeric Variant PO is:

cte NINJEV eN

where ctz is the proof context.

PO [0 and its ctz proof context are formally defined in section It must be noted that
PO 6] is slightly stronger than the evt/NAT PO defined in [2] as the guard of new events are not
taken into account in the antecedents of PO[6l

In order to guarantee that new events only introduce bounded stuttering steps, the expression
in the Variant clause must be decremented by any new event:
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Proof Obligation 7 (Non Divergence —-NDI-)

Let V' be the expression of the Variant clause in a refinement with invariant J refining an
abstract system with invariant /. For any new event H defined in the refinement, the Non
Divergence PO is:

ctt NINJEv:=V][H|V <w

where ctz is the proof context and v is a fresh variable such that v\ (J, I, ctz).

The PO [7]and its ctz proof context are formally defined in section This PO [6] is the
evt/VAR PO defined in [2]].
The Atelier B resources to be set to enable Non Divergence POs are:

Resource 3 (Non Divergence Proof Obligation)
ATB+xPOGxGenerate_FEventB_Non_Divergence_PO

ATB+xBCOMPxGenerate_FEventB_Non_Divergence_PO

3.5 Exclusiveness

Event B makes no fairness assumptions on the occurrence of events. When two or more events
have enabled their guards, one of these events occurs, but it is not known which. The choice of
the event to occur is non-deterministic. However, if the guards of the events are exclusive, the
non deterministic occurrence of events becomes deterministic.

The Atelier B resource to be enable the Exclusiveness POs is:

Resource 4 (Exclusiveness Proof Obligation)

ATB*xPOGxGenerate_EventB_Exclusivity_PO

3.5.1 Exclusiveness in Specifications

Exclusiveness may be checked with the following proof obligation:

Proof Obligation 8 (Exclusiveness in System Specifications —-EXC-)

Let E be the set of events in a system specification, (£, <) a strict total order, / the invariant
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of the system and ctx the proof context. The Exclusiveness PO is:
ctx NITEY(e, f)- (e feEXEANe=<f= —(grd(e) Agrd(f)))

where grd(e) and grd(f) denote the explicit guard of e and f given in definition

To be meaningful, this PO needs the FIS PO to be proved.

The PO[§]and its proof context ctz are formally defined in section of the annex.

3.5.2 Exclusiveness in Refinements

If the exclusiveness of grd(e) and grd( f) has been proved, for two abstract events e and f, then
the exclusiveness of grd(e’) and grd(f”) is guaranteed for their respective refinements e’ and f’.

If an abstract event e is refined by two or more events eq,...,e,, it must be proved that
grd(ey), . ..,grd(e,) are exclusive. Moreover, if new events are introduced, the exclusiveness of
the explicit guards of the new events with respect to the refined ones and among themselves must
be proved to preserve determinacy:

Proof Obligation 9 (Exclusiveness in Refinements —-EXC-)

Case Split of Events

For any abstract event e in a system specification or refinement with invariant /, let S, be
the set of events refining e with card(S.) > 1 in a refinement with invariant ./ and (S,, <) a
strict total order. The Exclusiveness PO:

ctt NINJTEY(E, ) (e — f €S xS.ne < f = =(grd(e) Agrd(f)))

Case New Events
Let { R, H} be a partition of the set of events in a system refinement with invariant .J, where
any event ¢’ in R is a refinement of an abstract event e in a system specification or refinement
with invariant / or an implicit event and any h in H, is a new event defined in the refinement.
Moreover, let (H, <) be a strict total order.

The Exclusiveness PO for new events vs refined ones is:

ctt NI NJEVY(h,e)-(he HANee€ R= —(grd(h) A grd(e)))
The Exclusiveness PO for new events is:

cte NINJEN(e, f)- (e~ feHXHAMNe=< f= —(grd(e) A grd(f)))
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To be meaningful, this Proof Obligation needs the FIS PO to be proved.

As other POs using the explicit guard, PO [§] and PO 9] state that FIS PO must be proved in
order to ensure that the external and internal guards are equivalent.
The Exclusiveness POs are formally defined in section|B.3.7

3.6 Coverage

The non deterministic choice in the occurrence of events in a system specification can be con-
sidered as an external non determinism [8]]; it models external choices made by the environment.
However, this external non determinism can be lost when the system is being refined because the
guards of events are strengthened by refinement.

A motivating example, in the framework of Action Systems, showing the lost of external non
determinism is given in [4]. That example is coded in Event B in figure In this example,
system SS models a vending machine dispatching fea or coffee. These goods are modeled by
events having the same names in system SS. At any time, events tea or cof fee can occur
as their implicit guards are true. The choice between these events is made by the external
environment synchronously engaging in events tea or coffee as demanded by the user of
the vending machine H Figure presents a possible refinement TT of system SS. In this
refinement, events tea and cof fee become guarded commands. Their external guards, which
are equivalent to the internal ones, since these events are feasible, depend on the value of the
gg variable. In this refinement, both events refine skip and the guards of the concrete events are
stronger than the abstract ones. The choice between events does not depend in the environment
any more, it is determined internally by the vending machine.

In order to avoid the loss of external non determinism in refinements, Atelier B implements
the Coverage PO:

Proof Obligation 10 (Coverage —-COV-)

Let H be the set of new events in a System Refinement with invariant J and A the set of
events contained in the component referenced by the REF INES clause of the refinement and
I its invariant. For any event e in A let S, be the set of events refining e. The Coverage PO
for abstract event e is

ctt NI NJFEgrd(e) = 3’ - (' € S UH A grd(e'))

!'The composing approach of Action Systems through a synchronous parallel operator among actions, described
in [4]), as been also proposed in the Event B framework [5]]. In this context, the external and internal non determinism
terms, imported from CSP [8]], can be used in Event B.

Version 1.0 22



CLEARSY

Event-B: Syntax and Proof Obligations in Atelier B

SYSTEM SS REFINEMENT TT
EVENTS REFINES SS
tea= VARIABLES
BEGIN g9
skip INVARIANT
END; gg : BOOL
coffee = INITIALISATION
BEGIN gg :: BOOL
skip EVENTS
END tea= SELECT gg = TRUE
END THEN gg BOOL END;
coffee= SELECT gg = FALSE
THEN gg BOOL END
END

Figure 3.1: Loss of External Non Determinism

where grd(e) and grd(e’) denote the explicit guard of events given in definition 2| and ctz
the proof context.

To be meaningful, this Proof Obligation needs the FIS PO to be proved.

PO[I0}is formally defined in section[B.3.8] It must be noted that the Coverage PO is stronger
than the Relative Deadlock Freedom POH] It means that the proof of absence of relative deadlock
in a refinement does not need the DLF PO when the Coverage PO is proved.

Moreover, in [3]] the Coverage PO is given as a sufficient condition to guarantee the preser-
vation of a form of liveness properties in a refinement. In that proposal, liveness properties (i.e.
dynamic constraints) take the form of a leads to property, where it can be specified and proved
that the execution of a system in a state where a certain predicate P holds eventually leads to an-
other state where a predicate () holds. Refinement does not preserve this kind of properties, for
this reason the progress condition [4] is given as a sufficient condition to preserve these dynamic
constraints. When all the events in a system specification or refinement are involved in the leads
to property, the PO to guarantee the preservation of that dynamic constraint take the form of the
Coverage PO, referenced as the “progress condition” in [3].

The Atelier B resource enabling the Coverage PO is:
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Resource 5 (Coverage Proof Obligation)

ATBxPOGxGenerate_EventB_Coverage_PO
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Resources

PO ‘ Resource

Coverage ATB*POGxGenerate_EventB_Coverage_PO
Deadlock freeness | ATB*TCxEventB_DeadlockFreeness
Exclusiveness ATB*POG*Generate_EventB_Exclusivity_PO
Feasibility ATB+xPOG*Generate_EventB_Feasibility_ PO

Non divergence

ATB*POGxGenerate_EventB_Non_Divergence_PO
ATB*BCOMP*Generate_EventB_Non_Divergence_PO
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Appendix B

Proof Obligations

B.1 Definitions

In the following two appendices, the Atelier B POs for Event B are described as they are coded
in the parametrization file paramGOPSystem.xs1 of the PO Generator. The POs in these
annexes are not given in the XSL syntax. However, some XPATH expressions are given to
reference elements in IBXML documents [[7]]. In this annex some definitions used in the POs are
given.

e Sequence conjunction
Let [ be a sequence of predicates. and_join(l) is defined as follows:

head(l) A and_join(tail(l)) ifl # ||

and_joint(l) = { frue if | =]

o Abstract Sets
Let Sets/* be a XPath in a . ibxml document. The sequence of abstract sets as pred-
icates is defined by:

abstract_sets(Sets/*) =
(s € FIN,(INTEGER) | s in Sets/* A is_abstract_set(s)]

where is_abstrac_set(s) is equal to true if s is not defined as enumerated set s = {ey, ...}
in the XPath expression.

The sequence of identifiers of abstract sets is defined by:

abstract_set_ids(Sets/*) = [s| s in Sets/x A is_abstract_set(s)]
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o Enumerated Sets
Let Sets/* be a XPath in a . ibxml document. The sequence of enumerated sets as
predicates is defined by:

enumerated_sets(Sets/+) = [s =t| s =t in Sets/x]

where the equality s = ¢ in the sequence denotes the enumerated set s in the XPath ex-
pression defined by the enumeration t.

o All Sets
Let Sets/* be a XPath in a x . ibxm1 document. The sequence of all sets as predicates

is defined by:
all_sets(Sets/ ) = abstract_sets(Sets/ )" enumerated_sets(Sets/ )

e B_definitions

NAT = 0. MAXINTA
INT = MININT .. MAXINT
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B.2 Proof Obligations for Specifications

B.2.1 Feasibility (FIS) Proof Obligation

For any event e of a system specification in /Machine/Operations/x, let grd(e) and fis(e)
be the explicit and implicit guards given in definitions 2] and [3] The Feasibility PO to prove for
event e is the following:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/x)) A
and_join(/Machine/Sees/Machine/Properties/*) A
/ * Sets and Properties of the System x /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/x A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A
/ * Invariant and Assertions of the System x* /
/Machine/Invariant/*

/Machine/Assertions/

=

(grd(e) = fis(e))
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B.2.2 Deadlock Freedom (DLF) Proof Obligation

Let E be the set of events of a system specification in /Machine/Operations. For any
event e of F, let grd(e) be the explicit guard of e given in Definitions |2} The Deadlock Freedom
PO to prove is the following:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A
/ * Sets and Properties of the System x /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A
/ * Invariant and Assertions of the System x /
/Machine/Invariant/x

/Machine/Assertions/~*

=

de- (e € E Agrd(e))

To be meaningful, the DLF PO needs the FIS PO to be proved.
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B.2.3 Exclusiveness (EXC) Proof Obligation

Let E/ be an injective sequence of events of a system specification whose range is the set of
events in /Machine/Operations. For any pair of events (e, f) where e € ran(FE) and
f € E[E~!(e) + 1..size(E)], let grd(e) and grd( f) be the explicit guard of events e and f given
in definitions[2] The Exclusiveness PO to prove is the following:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A
/ * Sets and Properties of the System x /
and_join(all_sets(/Machine/Sets/«*)) A
/Machine/Properties/* A

/ = Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/«) A
and_join(/Machine/Sees/Machine/Assertions/*) A
/ * Invariant and Assertions of the System * /
/Machine/Invariant/«

/Machine/Assertions/

=

~(grd(e) A grd(f))
To be meaningful, the DLF PO needs the FIS PO to be proved.
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B.3 Proof Obligations for Refinements

B.3.1 Merge Refinement Correctness

For any event e of a system refinement in /Machine/Operations/«,letay,...a, be the set
of events in /Machine/Abstraction/Machine[1]/Operations where each a; is ref-
erenced in the set e /Refines/* and e denotes the context of event e. The Merge Refinement
Correctness PO for each event e is:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/*) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/x) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/x) A
/ * Invariant and Assertions of the Refinement x /
/Machine/Invariant/*

/Machine/Assertions/«

=

le] = [li-(ielin|a)] ~J

where [Ji - (i € 1..n | a;) is a shorthand for

CHOICE a; OR...a, END

Version 1.0 34



CLEARSY

Event-B: Syntax and Proof Obligations in Atelier B

B.3.2 Feasibility (FIS) Proof Obligation

For any event e of a system refinement in /Machine/Operations/«, let grd(e) and fis(e)
be the explicit and implicit guards given in definitions [2| and |3} The Feasibility PO to prove for
event e is the following:

B_definitions N\

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/x A

/ + Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/«) A
/ * Invariant and Assertions of the Refinement x /
/Machine/Invariant/x

/Machine/Assertions/

=

(grd(e) = fis(e))
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B.3.3 Relative Deadlock Freedom (DLF) Proof Obligation

Let A be the set of abstract events in /Machine/Abstraction/Machine[1] /Operations/ *
and C' be the set of refined events in /Machine/Operations/ .
The Relative Deadlock Freedom PO is the following:

B_definitions N\

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/x A

/ + Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/«) A
/ * Invariant and Assertions of the Refinement  /
/Machine/Invariant/x

/Machine/Assertions/*

=

Ve-.(e€ ANgrd(e) = 3¢’ - (¢ € C A grd(¢)))

To be meaningful, the DLF PO needs the FIS PO to be proved.
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B.3.4 Skip Refinement Correctness Proof Obligation

For any new event i in /Machine/Operations/ x, The Skip Refinement Correctness PO is
the following:

B_definitions N\

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/x)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System * /
and_join(all_sets(/Machine/Sets/x)) A
/Machine/Properties/x A

/ + Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/x)) A
and_join(/Machine/Abstraction/Machine/Assertions/«) A
/ * Invariant and Assertions of the Refinement * /
/Machine/Invariant/x

/Machine/Assertions/~*

=

(] — [skip] —J
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B.3.5 Numeric Variant Proof Obligation

Let V be the expression in /Machine/Variant/x, the Numeric Variant PO is the following:

B_definitions A

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/x) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System * /
and_join(all_sets(/Machine/Sets/*)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/x)) A
and_join(/Machine/Abstraction/Machine/Assertions/«) A
/ * Invariant and Assertions of the Refinement * /
/Machine/Invariant/«

/Machine/Assertions/x

=

VeN
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B.3.6 Non Divergence Proof Obligation

Let V' be the expression in /Machine/Variant/x, v a fresh variable non free in the an-
tecedents of the PO and h a new event in /Machine/Operations/*. The Non Divergence
PO is the following:

B_definitions N\

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/x A

/ + Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/«) A
/ * Invariant and Assertions of the Refinement  /
/Machine/Invariant/x

/Machine/Assertions/*

=

[v:=V][hV <wv
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B.3.7 Exclusiveness (EXC) Proof Obligation
Case Split of Events

For any abstract event ¢ in /Machine/Abstraction/Machine[1]/Operations/« let
E(a) be an injective sequence in the set of events whose range is the following set:

{e| e € /Machine/Operations/* A e refines a}

For any pair of events (e, f), where e € ran(E(a)) and f € E(a)[E(a)"'(e) + 1..size(E(a))]
the Exclusiveness PO for the case of split of events is:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/«)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/x) A
/ * Invariant and Assertions of the Refinement * /
/Machine/Invariant/x

/Machine/Assertions/«

=

—(grd(e) A grd(f))
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Case New Vs Refined Events

Let H be an injective sequence of events whose range is the set of new events:
{e| e € /Machine/Operations/* A eis new}

For any pair of events (h, ¢) where h € ran(H) and eis aneventin /Machine/Operations/*
satisfying e ¢ ran(H ), the Exclusiveness PO for the case of new vs refined events is:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/x) A
/ * Invariant and Assertions of the Refinement * /
/Machine/Invariant/x

/Machine/Assertions/«

=

—(grd(h) A grd(e))
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Case New Events

Let H be an injective sequence of events whose range is the set of new events:
{e| e € /Machine/Operations/* A eis new}

and (ran(H), <) a strict total order. For any pair of events (e, f), where e € ran(H) and
f € H[H '(e) + 1..size(H)] the Exclusiveness PO for the case of new events is:

B_definitions N

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/*) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System = /
and_join(all_sets(/Machine/Sets/«)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/«)) A
and_join(/Machine/Abstraction/Machine/Assertions/x) A
/ * Invariant and Assertions of the Refinement * /
/Machine/Invariant/x

/Machine/Assertions/«

=

~(grd(e) A grd(f))
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B.3.8 Coverage Proof Obligation

Let H be the set of new events in a refinement:
{e| e € /Machine/Operations/* A eis new}
and A the set of abstract events:
{e| e € /Machine/Abstraction/Machine[1]/Operations/«}
. Let R(a) be the set of events refining a:
{e| e € /Machine/Operations/* A e refines a}
The Coverage PO is the following:

B_definitions A

/ * Sets and Properties from Seen components: * /
and_join(all_sets(/Machine/Sees/Machine/Sets/*)) A
and_join(/Machine/Sees/Machine/Properties/x) A

/ * Sets and Properties clause from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Sets/x)) A
and_join(/Machine/Abstraction/Machine/Properties/«) A
/ * Sets and Properties of the System * /
and_join(all_sets(/Machine/Sets/*)) A
/Machine/Properties/* A

/ * Invariant and Assertions from Seen components: * /
and_join(/Machine/Sees/Machine/Invariant/*) A
and_join(/Machine/Sees/Machine/Assertions/*) A

/ * Invariant and Assertion clauses from all refinement components: * /
and_join(all_sets(/Machine/Abstraction/Machine/Invariant/x)) A
and_join(/Machine/Abstraction/Machine/Assertions/«) A
/ * Invariant and Assertions of the Refinement * /
/Machine/Invariant/x

/Machine/Assertions/x

=

Ve-(e€ ANgrd(e) = 3¢’ - (¢/ € R(e) UH A grd(e))
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