
Atelier B

Atelier B Translators
User Manual

version 4.6

ATELIER B
Atelier B Translators User Manual
version 4.6

Document made by CLEARSY.

This document is the property of CLEARSY and shall not be copied, duplicated or
distributed, partially or totally, without prior written consent.

All products names are trademarks of their respective authors.

CLEARSY
ATELIER B maintenance

Parc de la Duranne
320 avenue Archimède

Les Pléiades III - Bât.A
13857 Aix-en-Provence Cedex 3

France

Tél 33 (0)4 42 37 12 99
Fax 33 (0)4 42 37 12 71

email : maintenance.atelierb@clearsy.com

Contents

1 Description of this manual 1

1.1 Aim . 1

1.2 Required Prior Knowledge . 1

1.3 Overview of this Manuel . 2

1.4 How to use this Manual . 2

1.5 Conventions and syntax . 2

1.6 Related Documents . 2

2 Presentation of the Software 3

2.1 Purpose . 3

2.2 Recommended Environment . 3

2.3 Provided Services . 4

2.3.1 Preface: Reasons for two-pass translation 4

Complete translation of the entire B0 language 4

Reliable and high performance translation 5

Resolving implicitly glued data and renaming 5

Creation of the component instances 5

Valuation of formal parameters . 5

2.3.2 Automatic translation service of a B0 implementation into target
language . 6

2.3.3 Linking service . 6

Case of an Autonomous Project . 6

Case of a heterogeneous project . 7

2.3.4 Basic Machines . 8

3 Use principles 9

3.1 Operating Modes . 9

3.1.1 Using the Translator via the GUI∗ 9

Translating a BO implementation . 9

Global project linking . 10

1

ii CONTENTS

3.1.2 Using the translator in batch∗ mode 10

Translating a B0 implementation . 10

Global project linking . 11

3.1.3 Using the Translator from the command line 11

3.1.4 Compiling and Executing the Code Produced 12

3.2 Inputs and Outputs . 13

3.2.1 Messages Generated by the Ada Translator 13

3.2.2 Using the translator from the command line or the Batch mode∗ . . 13

3.2.3 Using the translator from Atelier B’s GUI∗ 13

3.2.4 Files . 13

3.3 Precautions for Use . 14

3.3.1 Important Proof Related Warning 14

3.3.2 Important Warning Relating to the Values of the MAXINT and
MININT Constants . 14

3.3.3 Size of Lines Produced . 14

3.3.4 Compatibility of the Translator with Atelier B 15

3.3.5 Naming Modules and Projects for the Ada and HIA Translators . . 15

4 Operating scenarios 17

4.1 Developing a native B project . 17

4.1.1 Principle . 17

4.1.2 Informal Example Specifications . 17

4.1.3 Project Architecture and B Code . 18

The stack component . 18

The display stack component . 18

The stack interface component . 18

The demo component . 21

4.1.4 Integrating Components into Atelier B 21

4.1.5 Unitary Translation of the Produced Code 21

4.1.6 Project linking . 21

4.1.7 Compiling and Executing the target code 24

4.2 Developing a Heterogeneous B/Target Language Project 24

4.3 Developement of a Heterogeneous B/HIA project 27

5 Complete List of Services 29

5.1 Unitary Translation of an Implementation 29

5.2 Project Linking . 29

5.3 Translating a Project with Traces . 29

5.4 Restriction of translators use . 31

2

CONTENTS iii

6 Glossary 33

A Basic Machines 35

A.1 Principle . 35

A.1.1 Definition . 35

A.1.2 Usefulness . 35

A.2 Description of the Basic Machines Delivered with Atelier B 35

A.3 Writing a Basic Machine . 35

A.3.1 The B Specification writing method 36

A.4 Target code (interface and body) writing method 36

A.4.1 Target Code writing method for Ada 36

A.4.2 Target code writing method for HIA 37

A.4.3 Target code writing method for C++ 38

A.4.4 Target code writing method for C 39

A.4.5 The “B Link File” . 39

B B0 specifities accepted by the HIA translator 41

B.1 Introduction . 41

B.2 Arrays translation . 41

B.2.1 Principle . 41

B.2.2 Example . 42

B.3 Record translation . 42

B.3.1 Principle . 42

B.3.2 Example . 42

B.4 Formal parameters . 43

3

List of Figures

2.1 Files produced for the mach interface . 6

2.2 Files produced for the mach body . 6

3.1 Translation of an implementation in batch mode 10

3.2 Translation of an implementation using the command line 12

4.1 Specification and implementation of the stack component 19

4.2 Specification and implementation of the display stack component 20

4.3 Specification and implementation of the interface stack component 22

4.4 Specification and implementation of the demo component 23

4.5 Project dependency graph . 24

4.6 Compilation of an Ada code produced by the Ada translator 25

4.7 Executing the Ada program . 26

4.8 Correspondence between the physical instances of the project and their
access path in Ada, C and C++ . 26

5.1 Translation of an implementation from the command line 29

5.2 Options available when performing the unitary translation of a component 30

5.3 Options available during linking . 30

A.1 Basic machines supplied with Atelier B . 36

A.2 Translation of the B0 types in Ada, HIA, C and C++ 37

A.3 Example of a “B Link File” . 40

1

Chapter 1

Description of this manual

1.1 Aim

This user manual applies to the following softwares :

• Ada Translator, since version 4.61

• HIA Translator, since version 4.62.

• C/C++ Translator, since version 4.23

From now on, when we will refer to the Translator software, this will mean that we are
evoking the Ada, HIA, C or C++ Translators, indifferently. When we desire to differentiate
between the software, we will clearly write Ada Translator, HIA Translator, C Translator
or C++ Translator. In the same way, when we will refer to the target language, that will
mean that we are referring to Ada, HIA, C or C++ Language.

The aim of this user manual is to make the required knowledge available to the persons
using the Translator. It has a double goal:

• to enable these persons to learn progressively.

• to serve as a reference to identify the behavior of this software.

To do this, the required prior knowledge, how to access the manual according to the user’s
requirements, notation conventions used and useful reading will be exposed.

1.2 Required Prior Knowledge

The reader of this manual is assumed to be trained to B and to the target language, as
well as in the use of Atelier B and the target compiler.

1The ADA translator translates all B0 implementations into ADA code in conformance with the Ada-
83[ADA-83] and Ada-95[ADA-95] standards.

2The HIA translator translates into “High Integrity Ada” code, syntactically in conformance with the
SPARK norm described in [SPARK]. In return for some restrictions on the B language in input, it generates
a more simple code, very close to the B0 and “safer”

3This translator tranlates all the implementations into ANSI-C[ANSI-C] or ANSI-C++[ANSI-C++]
code.

1

2 Atelier B Translators - User Manual

1.3 Overview of this Manuel

Chapter 2 presents the Translator’s aims. The supported environments and the general
translation paradigm are also described.

Chapter 3 details the operation principles of the Translator. Its use within Atelier B is
described, along with its use through the command line of a shell∗ . The chapter ends
with a description of the precautions to be taken when using a translator.

Chapter 4 uses a simple example to illustrate the full development cycle for a B project
translated into the target language. The case of a B project whose translation into the
target language is merged into a larger project written originally in the target language is
touched on.

Chapter 5 sums up the program use options. It then details the use of the Translator
which can be used to manage project configurations by using the SCCS∗ tool.

Finally, chapter 6 explains the technical terms used in this document.

Appendix A explains the procedure to follow when developing basic machines.

1.4 How to use this Manual

A novice user of the Translator may read only Chapters 2, 3 and 4, as an initial intro-
duction. The example presented in this last chapter provides a complete illustration of
the use of the program and should allow the user to come to terms with the Translator
progressively and completely.

Once he gets acquainted with the program, an experienced user will find in Chapter 5 a
summary of the options available when using the translator.

1.5 Conventions and syntax

• The “computer objects” such as file names, window names or menu items are written
using a non-proportional font as shown in the example below:

Machine MM.mch.

The input/output exchanges between the user and the program are described using
the same font. To differentiate inputs from outputs, the messages generated by the
program will be preceded by the > sign, as shown in the example below:

ls

> AA.mch AA_1.imp SCCS

• Words that are explained in the Glossary (chapter 6, page 33) are followed by an
asterisk, as shown in the example below: “The GUI∗ user”.

• The paragraphs describing specificities of one or several translators are preceeded
with the symbol 	 and written in a specific font, as follows:

	 This section does not concern the translator...

DESCRIPTION OF THIS MANUAL 3

1.6 Related Documents

The bibliography (page 45) provides a list of documents that allow a novice user to learn
how to use Atelier B and the target language, and which serve as a reference base for
experienced users.

4 Atelier B Translators - User Manual

Chapter 2

Presentation of the Software

2.1 Purpose

The purpose of the Translator software is to perform an automatic translation of the B0
implementations of a project into target source code. The target source code may be
compiled in order to realise an independent project, or integrated into a native target
language development.1.

The translators are able to translate into Ada, HIA, C or C++ the whole B0 language.
There are no restrictions, especially as regards the naming of identifiers : any identifier
which may enter into conflict with the target language is renamed by the Translator.

Important remark: the HIA translator works with a B0 language that has some specificities
detailed in appendix B.

So, any component that is successfully analysed by the B0 checker can be translated into
the target language. In the rest of this manual, any implementation of a component for
which the B0 checker is successfully executed will be called a B0 implementation.

2.2 Recommended Environment

The Translator is intended for execution on the same platforms as the Atelier B. The
Translator generates a portable target code, in conformity with the current norms.

Program options are used to configure the generated code in order to match the target
system and the target compiler 2.

In its 4.6 version, the code produced by this program has been tested with a GNU compiler
in the following environments:

• Sun workstation running Solaris 2.6, 7 or 8

• Hewlett-Packard workstation running HP-UX 10.20

• PC type computer running Linux 2.2

1This function is used to integrate, into a project written in the target language, the translation of the
secure components written in B.

2In this way, a cross-translation (similar to cross-compiling) can be performed .

5

6 Atelier B Translators - User Manual

Important Remark : The user must have a development environment for the complete
target language, since no compiler or language interpretation tools are supplied with the
Translator.

2.3 Provided Services

2.3.1 Preface: Reasons for two-pass translation

This section presents technical aspects that may initially be ignored by a novice user (who
may in this case refer directly to paragraph 2.3.2).

The Translator is used to translate any B0 implementation into target language automat-
ically. A B0 implementation is not translated into a source code in target language in a
single call (or pass) of the translator.

Two passes are used :

• Unitary translation: during this first pass, each B0 implementation is translated
into an “object” file, independently from the other implementations. These “object”
files produced during the first pass can be re-used by several projects, allowing the
creation of B libraries .

• linking : during this second pass, the Translator produces in particular the target
language files (refer to paragraph 2.3.3). These target language files are specific to
the current project and cannot be re-used in another project.

The motivations for this two-pass translation mechanism (production of object files then
linking) are linked to the following aims of the Translator :

• Complete translation of the B0 language.

• Accurate and efficient translation.

Complete translation of the entire B0 language

A certain number of identifier clashes can occur when translating from B0 into the target
language :

• The B0 language distinguishes between ident and IDENT, which is not the case for
the Ada language.

• The void identifier in B0 clashes with the void keyword reserved in C++.

• The B0 language allows you to write identifiers that comprise more than one ’_’
successive character (such as for example ident__ifier). These identifiers are not
valid Ada identifiers.

• Some valid B0 identifiers clash with the target language reserved words. For example,
package is a valid B0 identifier.

Therefore it is clear that a phase of identifier clash resolution, covering an entire project
is necessary to perform an automatic and systematic translation from the B0 language to
the target language.

PRESENTATION OF THE SOFTWARE 7

Reliable and high performance translation

	 This section does not concern the HIA translator which manages arrays
and records translation differently. Refer to the B appendix for more
details.

Reliable translation of B0 arrays requires determining by inference the types of the arrays
used and automatically generating the related “array types”. This action must be efficient
because two arrays that have the same inferred type in B0 must be translated by two arrays
that have the same generated type in the target language, so as to be able for example to
copy and compare these arrays.

The same problem occurs during the translation of B0 records : it is necessary to infer a
declaration of the associated record type.

A generation and resolution phase for array and records types that apply to the entire
project is therefore necessary for a reliable and high performance translation of the ele-
ments of this kind in the B0 language (which does not explicitly type arrays and records),
into the target language : C, C++, or ADA (which imposes a strict explicit typing of
arrays and records).

Resolving implicitly glued data and renaming

Resolving implicitly glued data and renaming in a strictly typed language such as Ada or
C++ can only be carried out during a linking phase when the Translator has an overall
view of the entire project.

Creation of the component instances

	 This section applies only to the HIA translator

The linker is responsible for the copy (physical copy of the files) of the files for each instance
of a project component.

So if in a project two instances M1 and i1.M1 of a component M1 are used, then the linker
creates two packages:

• The package M1, in m1.ads and m1.adb

• The package i1_M1, in i1_m1.ads and i1_m1.adb. This package is obtained by
copying the package M1 and replacing all the occurences of M1 by i1_M1.

Valuation of formal parameters

	 This section applies only to the HIA translator.

The HIA translator declares the formal parameters in the associated packages. It then
has to define in each package having formal parameters, not only the name and the type
of those parameters, but their value too.

Therefore, the effective value of a formal parameter is known only during the module
importation by another project module (example : in M1, the clause IMPORTS M2(10) : it
is in M1 that we know the value 10 of the formal parameter param of M2. But it is in M2
that param : constant INTEGER := 10 must be written.

8 Atelier B Translators - User Manual

Target language After unitary translation After linking
Ada mach.str mach.ads
C mach.spe mach.h

C++ mach.spe mach.h

Figure 2.1: Files produced for the mach interface

Target language After unitary translation After linking
Ada mach.bod mach.adb
C mach.bdy mach.c

C++ mach.bdy mach.cpp

Figure 2.2: Files produced for the mach body

The linker has then to set up the effective values of the formal parameters, corresponding
to the components use in the B project to translate.

2.3.2 Automatic translation service of a B0 implementation into target
language

This service takes as its input a BO implementation mach.imp and produces the following
files :

• Two files for the mach interface. One after unitary translating and one after linking.
The file names are given in table 2.1.

• Two files for the mach body. One after unitary translating and one after linking.
The file names are given in table 2.2.

• An object file which describes the symbols imported and exported by mach. By de-
fault, this file is named mach.blf. Among other things, this file is used to produce
the list of substitutions to be applied to the object interface and body files so as to
produce the final target files.

2.3.3 Linking service

Case of an Autonomous Project

In the case of an autonomous project, the linking service takes as its input the name of
the specification of an implementation destined to become the entry point for a project as
well as the name of the start-up module to be created, and it creates :

• All the source files (interfaces and bodies) for the project components.

	 For the HIA translator, files are duplicated for each instance of
a component.

• The target code for the start-up module of the project.

PRESENTATION OF THE SOFTWARE 9

• The interface and the body of the sets module (in Ada) or SETS (in C/C++) for
the inferred array and record types, the concrete constants, the abstract sets and
the predefined elements (succ, pred, MAXINT, MININT, . . .).

	 for the HIA translator, this file contains only the predefined sets
and functions.

• The makefile file which will be used to generate the project.

To be usable as the entry point of a project, an implementation must have one, and only
one operation, with no input or output parameters. However, the name of this operation
can be freely defined.

The link editor recursively scans the import links for this machine and thereby translates
into target “terminal” code all the object files used by project. Object files are sought for
in the lang directory of the project during the translation, then in the lang directory of
used libraries, in the order they were declared.

Case of a heterogeneous project

In the case of a heterogeneous project, the link editor takes as an input the name of the
specification of an implementation destined to become an entry point for a project, as well
as the name of a start-up module to be created, and produces :

• All the source files (interface and body files) for the project components.

• The target code for the access point to the B project. This module enables the ini-
tialization of all the B components, and then access to all the data and the operations
of these machines.

• The interface and the body of the sets module (in Ada) or SETS (in C/C++) for the
inferred arrays types, the concrete constants, the abstract sets and the predefined
elements (succ, pred, MAXINT, MININT, . . .).

• A makefile skeleton that allows the project to be generated.

The link editor recursively scans the import links for this machine and thereby translates
into target “terminal” code all the object files used by project3. Object files are sought
for in the lang directory of the project during the translation, then in the lang directory
of used libraries, in the order they were declared.

Important note : Libraries must be translated before the project that uses them! If this
is not the case, project linking will fail as the object files of the library do not exist.

2.3.4 Basic Machines

The Translator is supplied with B specifications and the object files for a set of basic
machines that facilitate the setting up of formatted inputs and outputs, tables indexed by
enumerated sets or by intervals, . . .

These machines are described in Appendix A.

3On the other hand, object files from unused components in the project are not translated.

10 Atelier B Translators - User Manual

Chapter 3

Use principles

3.1 Operating Modes

The Translator may operate in the following three modes:

• In the context of a work session using Atelier B GUI∗ .

• In the context of Atelier B batch mode.

• Through the command line

3.1.1 Using the Translator via the GUI∗

Translating a BO implementation

To translate an implementation implementation.imp of a project proj using the GUI of
Atelier B, the following operations must be carried out1 :

• Using the mouse, select the implementation implementation.imp.

• Click on the Translator button. From the window that is displayed, select the
target language with Language and then select Selected Only for Components.
Then click on the OK button. The translation process is then started.

Remark: As described in sub-section 2.1, a component must have successfully passed the
B0 checking step before it can be translated.

Therefore, if this step was never performed or if the component was modified since the last
check was performed, the B0 checking tool will first be invoked for the implementation to
translate.

This tool may induce the Type Checker invocation for this implementation. If necessary,
all required machines may also be analyzed by this tool.

Sub-section 3.1.2 provides an example of the messages produced by the Ada translator
during translation.

1Project creation and management operations are not described in this manual, the reader will find
their description in [ATB1].

11

12 Atelier B Translators - User Manual

Translator Command
Ada adatrans implementation_1

HIA hiatrans implementation_1

C ctrans implementation_1

C++ c++trans implementation_1

Figure 3.1: Translation of an implementation in batch mode

In the same way, it is possible to translate several implementations during a single opera-
tion by selecting them all.

Global project linking

To perform linking on all a project’s components, use the mouse to select the file that
serves as the project’s entry point. Then click on the Translator button and choose the
target language from the Language menu, and All for Components options. The name of
the project start-up module is the name of the B project.

Sub-section 3.1.2 provides an example of the messages produced by the Ada translator
during the translation.

3.1.2 Using the translator in batch∗ mode

Translating a B0 implementation

To translate an implementation implementation_1.imp of project proj using Atelier B
batch∗ mode, type the command given by the 3.1 table.2:

The translator 3 will then produce the following type of output4 :

Translating into ADA the file implementation_1

> Entering B0->Ada mode ...

> Creating B Extended Tree

> Creating package specifications (/home/B/projet/lang/implementation.str)

> Creating package body (/home/B/projet/lang/implementation.bod)

> Creating B Link file (/home/B/projet/lang/implementation.blf)

> Free B Extended Tree

>

>

> Translation into ADA successful

If the command is repeated without changing the B0 source file, a message similar to the
following is obtained :

Component implementation_1 is already translated

2The project creation and management operations are not described in this manual, the reader will find
a full description in [ATB1].

3The example output given is produced by the Ada translator, the output is similar for the other
translators.

4The example given is produced by the Ada translator in verbose mode. By default, a more concise
output is obtained.

USE PRINCIPLES 13

It is then possible to force the translation of the component by disabling the depen-
dence checks function (command ddm or disable_dependence_mode), and then calling
the translator. Conversely, the dependence check function can be re-enabled by typing
edm or enable_dependence_mode.

Global project linking

To perform the project linking, first determine the project entry point (in this case, it is
input_1.imp) and type the command:

Target language Command
Ada ada_all entry_1

HIA hia_all entry_1

C ccompile entry_1

C++ c++all entry_1

The translator 5 produces an output similar to the following6 :

> Entering project mode

> Calling B linker

> Entering project mode

> Analysing module entree

> (entry) exports (constants)

> Analysing machine constants

> Creating makefile

> Creating ada source code for executable module (project.bod)

> Analysing instance this

> This instance does not have a SEES clause

> Analysing instance this.ref_constantes

> This instance does not have a SEES clause

> Analysing imported variables of instance this

> This module does not import any variable

> Analysing imported variables of instance this.ref_constantes

> This module does not import any variable

> Creating template for package sets

> Installing project

> Creating temporary bed file /tmp/blka04747

> Executing "/home/ada/bed/bed -s /tmp/blka04747 -i /home/B/project/lang/makefile.blf

> -o /home/B/project/lang/makefile"

...

> Executing "rm /tmp/blka04747"

> Freeing allocated objects

>

> ADA translation successful

3.1.3 Using the Translator from the command line

Chapter 5 presents the provided command line options to use when using the Translator.

Note that this possibility should be reserved to experienced users since :
5The sample output given here is produced by the Ada translator. The other translators produce similar

output
6The example given is produced by the Ada translator in verbose mode. By default, a more concise

output is obtained.

14 Atelier B Translators - User Manual

Translator Software
Ada tbada
HIA tbhia
C++ tbcpp
C tbcpp -c

Figure 3.2: Translation of an implementation using the command line

• When used from the command line, the translator requires you to provide many
parameters : project database directory (bdp), project translator directory (lang),
full path for the linker replacement tool (bed tool), path to the directory holding
the information of the LIBRARY project, . . .

• If you use the Translator from the command line, you must deal yourself with the
dependences. For instance, if B source files are modified, you must not forget to
re-translate each component that uses them, . . .

The array 3.2 gives the name of each translator.

In the following examples, we will assume that we want to translate into C++ a B project
named my_project.

We must therefore know the following information :

Identifier Meaning
${My_Project}/lang Path to the translation directory
${My_Project}/spec Path to the B source code
${AB}/press/lib Path to the LIBRARY project provided with Atelier B
Entry Project entry point

1. Case of an unitary translation : Translation of the implementation Component_1.imp
of project My_Project :

tbcpp -i Component_1.imp -P ${my_project}/lang
-I ${AB}/press/lib/spec -L ${AB}/press/lib/lang/cpp -w

2. Case of the translation of the project entry point with linking: translation of the
entry point Entry_1.imp and linking.

tbcpp -o My_Project -e Entry -E bed -P ${My_Project}/lang
-I ${AB}/press/lib/spec -L ${AB}/press/lib/lang/cpp -w %$

This is only a little example, the reader should read chapter 5 to get the full list of services.

3.1.4 Compiling and Executing the Code Produced

• Execution on the machine that hosts Atelier B. From the shell∗ window, simply se-
lect the project’s lang directory and type make.

USE PRINCIPLES 15

• Execution on a target machine. Transfer, the full contents of the project’s lang
directory to this machine and type make. This directory contains all the files required
for compiling (including files from the translation of libraries.).

The makefile file also defines the goal clean used to delete all binary files produced by
the target compiler. To perform this operation, type make clean.

3.2 Inputs and Outputs

3.2.1 Messages Generated by the Ada Translator

3.2.2 Using the translator from the command line or the Batch mode∗

The Translator produces messages that describe its operation from the standard output
(i.e, stdout). It may also produce warning messages from this same standard output, as
well as error messages from the error output (i.e, stderr).

Therefore, a script that starts a complete translation scenario may retrieve the results
obtained in stdout and any error messages from stderr, as shown in the following example
7:

#!/bin/sh

Script that translates all the implementations of the current directory

rm -f /tmp/res

rm -f /tmp/err

for f in *.imp

do

echo ‘‘Translation of $f’’

tbada -i $f >> /tmp/res 2>> /tmp/err

done

echo ‘‘Translation results :’’

cat /tmp/err | less

echo ‘‘Translation errors :’’

cat /tmp/err | less

3.2.3 Using the translator from Atelier B’s GUI∗

The messages are integrated inside Atelier B’s GUI∗ .

3.2.4 Files

The Translator reads and writes the files using the standard operating system API∗ . The
points to watch are therefore:

• Ensuring that the user who starts the program has the following rights:

– The right to read from the source and bdp directories of the project libraries
used, and this for all files in these directories.

7The HIA translator is used in this example

16 Atelier B Translators - User Manual

– The right to write in the project’s bdp and lang directories.

• Ensure that enough space remains in the project file system.

If these instructions are not followed, the Translator generates an error message that
explains the problem caused by the system. These messages are provided to the program
by the system. It may therefore be necessary to configure the system or the user’s account
in order to modify the characteristics of these messages (the language used by the system
to provide the error messages may sometimes be chosen by environment variables or by
other methods.).

3.3 Precautions for Use

3.3.1 Important Proof Related Warning

The target code generated by the Translator is only valid if the
components that are translated are completely proven.

The Ada translator allows you to translate projects whose components are not completely
proven in order to offer users greater flexibility in their development. However, the trans-
lation of a component that is not yet proven causes the generation of a warning message,
and the generated code comprises a warning comment in its header.

Indeed, the generated code might not be compilable (in the case of a design error in B
that is only detected at the proof stage), or can raise exceptions during its execution (e.g,
in the case of access to an invalid index in a table).

3.3.2 Important Warning Relating to the Values of the MAXINT and
MININT Constants

The ADA Translator allows you to redefine the values of MAXINIT and MININT in order to
translate the code destined for a target system whose architecture differs from the one of
the host system.

The use of a MAXINT and/or MININT value that is different from the
one used by the prover will cause a result that cannot be guaranteed.

By default, the Translator is compatible with the prover. It is recommended to contact
ClearSy for advice if you want to modify the values of these constants.

3.3.3 Size of Lines Produced

Some target compilers, only allow files with lines that do not exceed a certain size as
inputs.

For this reason, the Translator checks the length of the lines that they produce. This length
may be set by the user with the -l and -t options, whose default values are respectively
80 and 4.

USE PRINCIPLES 17

If the user modifies these values, they must ensure:

• That the maximum line size supplied does not exceed the capacity of the target
compiler used.

• That the maximum line size supplied does not inhibit the code generation. Remem-
ber that the operation calls are prefixed by the names of the machines that define
them. It is easy to see that the generation of long lines that cannot be broken is
possible simply by giving “long” names to machines and operations. It is then nec-
essary to ensure compatibility between this choice and the choice of the maximum
length of the lines produced. The “Limits Checker” tool in Atelier B may assist the
user in setting these limits.

3.3.4 Compatibility of the Translator with Atelier B

	 This restriction does not concern the ADA and HIA translators.

It is always necessary to ensure that the version of the Translator is compatible with
Atelier B tools.

3.3.5 Naming Modules and Projects for the Ada and HIA Translators

	 This restriction concerns the ADA and HIA translators only.

The only naming conflicts that the linker cannot resolve are conflicts that occur in module
names. The linker cannot rename the modules as the Ada language imposes that the files
that represent a compiled unit (i.e, a procedure or a package) have the same name as this
unit8.

For example, if a module or project name is in conflict with an Ada keyword, the linker
cannot resolve the conflict and the translation into Ada will fail.

The restrictions that apply to the module and project names are as follows:

• In a project, no module may have the same name as the project.

• The project name must not be in conflict with the target language.

It should be remembered that the Ada language does not differentiate between upper and
lower case characters, therefore the rules above must be applied without reference to any
possible use of lower case. Therefore a project PROJ cannot contain a proj module, and a
project cannot be named ENTRY.

8In this case, ”name” applies to the filename, without its extension

18 Atelier B Translators - User Manual

Chapter 4

Operating scenarios

4.1 Developing a native B project

4.1.1 Principle

This section provides an example of a native B project, used to illustrate the following
aspects of the development of such a project:

• Influence of the translation into Ada on the architecture of the written B code.

• Unitary translation of B project modules.

• Project linking.

• Compiling and executing the generated code.

The detailed operating information for the Translator will be given by the screen captures
of the Atelier B GUI∗ .

4.1.2 Informal Example Specifications

The purpose is to test the handling of an integer stack. To do this, several modules are
written:

• A module that initializes a stack of a given size and which allows to push an element
on the stack, or to pop it from the stack.

• A module that displays a stack.

The example will have to create two stacks of different sizes and use the display of their
contents to prove that the stacks are correctly initialized and that the push and pop
procedures work.

Important remark: This example, and the B source codes presented below for its imple-
mentation, do not pretend to be perfect examples of B language. It is not intended as a
B language design style example, but simply a complete project creation example, with
translation into a target language followed by the execution of the product code.

19

20 Atelier B Translators - User Manual

Thus, to handle unbounded stacks, it would have been possible to implement them on the
basic machine BASIC_ARRAY_VAR instead of a limited static array.

	 The examples are not adapted to a HIA translation as the arrays type
are not explicitely declared (refer to appendix B for more details). After each
example, we will explain the modifications to perform, to translate using
the HIA translator.

4.1.3 Project Architecture and B Code

The stack component

The stack component models a natural integer stack. The size of the stack can be set by
parameter (it is a machine parameter), on condition that it does not exceed 10 elements
in order to keep the example simple, the stack is implemented by a static array of 10
integers. The component offers two operations push and pop that are used to manage the
stack.

Figure 4.1 gives the B source code for the specification and the implementation of this
component.

	 To translate into HIA, an explicit array type must be defined :
table type = (1..10) --> NAT and then be used to type the stack.

The display stack component

The display_stack component is used to display a “stack” in the format defined by the
stack component, i.e, a stack implemented in an array of 10 items. In this way, the
display operation that is used to display a stack takes as its parameters, not only the
array representing the stack, but also the current size of the stack, i.e, the number of array
elements that are part of the stack.

For presentation reasons, this operation also takes as its input a message to display before
displaying the stack.

Figure 4.2 shows the B source code of the specification and the implementation of this
component.

	 To translate into HIA, an explicit array type must be defined :
type array = (1..10) --> NAT and then, be used to type stack. The other
components (for example stack) must type their stacks with type array to
ensure the translation success.

The stack interface component

The stack_interface component offers a higher level of abstraction than the two pre-
ceding components. It is parameterized by the size of the stack to create.

It creates a stack of this size, displays it to ensure that it is empty, fills it with consecutive
integers, then displays it to ensure that it is full. The stack will then be emptied of its
elements, then displayed to ensure that it is empty.

The stack is created by importing the stack component. It is filled in, then emptied using
the push and pop operations in this component. Importing the display_stack component

OPERATING SCENARIOS 21

MACHINE

stack(nb items)

CONSTRAINTS

nb items : NAT &

nb items >= 1 &

nb items <= 10

CONCRETE VARIABLES

the stack, top of stack

INVARIANT

the stack : (1..10)-->NAT &

top of stack : NAT &

top of stack >= 0 &

top of stack <= nb items

INITIALISATION

the stack :: (1..10) --> NAT ||

top of stack := 0

OPERATIONS

push(val) =

PRE

top of stack < nb items &

val : NAT

THEN

the stack(top of stack) := val ||

top of stack := top of stack + 1

END ;

pop =

PRE

top of stack >= 1

THEN

top of stack := top of stack - 1

END

END

IMPLEMENTATION

stack 1(nb items)

REFINES

stack

INITIALISATION

the stack := (1..10)*{0} ;

top of stack := 0

OPERATIONS

push(val) =

BEGIN

top of stack := top of stack + 1 ;

the stack(top of stack) := val

END ;

pop =

BEGIN

top of stack := top of stack - 1

END

END

Figure 4.1: Specification and implementation of the stack component

22 Atelier B Translators - User Manual

MACHINE

display stack(nb items)

CONSTRAINTS

nb items : NAT &

nb items >= 1

OPERATIONS

display(

message,

pile,

stack size) =

PRE

message : STRING &

pile : (1..10) --> NAT &

stack size : NAT &

stack size <= nb items

THEN

skip

END

END

IMPLEMENTATION

display stack 1(nb items)

REFINES

display stack

SEES

BASIC IO

OPERATIONS

display(message, stack, stack size) =

BEGIN

STRING WRITE("Expected result : ") ;

STRING WRITE(message) ;

STRING WRITE("\nEffective result :\n") ;

IF (stack size = 0)

THEN

STRING WRITE("-- the stack is empty --\n")
ELSE

VAR

ii

IN

STRING WRITE("(bottom of stack) ") ;

ii := 1 ;

WHILE ii <= stack size

DO

INT WRITE(stack(ii)) ;

STRING WRITE(" ") ;

ii := ii + 1

INVARIANT

ii : NAT &

ii >= 1 &

ii <= (nb items + 1)

VARIANT

nb items + 1 - ii

END ;

STRING WRITE("(top of stack)\n")
END

END

END

END

Figure 4.2: Specification and implementation of the display stack component

OPERATING SCENARIOS 23

enables displaying the stack.

Figure 4.3 gives the B source code of the specification and the implementation of this
component.

	 To translate into HIA : the stacks must be typed with the type type array
of display stack

The demo component

The demo component must trigger the application execution. It has only one operation,
that creates and then tests the two stacks.

This component will be the entry point of the B project. It is the root of the project
import tree, as shown in figure 4.5.

Figure 4.4 gives the B source code for the specification and the implementation of this
component.

Among others, this is the one that imports the basic machine BASIC_IO1 as a number of
project components will produce displays on-screen (including the demo component) and
as previously stated, the rule “an ancestor in the import graph cannot perform SEES”
must be followed.

4.1.4 Integrating Components into Atelier B

The reader should refer to the [ATB1] document for detailed explanations on the integra-
tion of components in Atelier B. This paragraph is limited to a brief description of the
steps to follow.

Thus, the user must perform the following operations:

• Create a project. In the rest of this chapter, it will be assumed that the project
name is DEMO_STACKS. Attach this project to the LIBRARY library, therefore it will
have access to the basic machine BASIC_IO.

• Insert the components detailed in sub-section 4.1.3. Perform the steps detailed in
Type_Check then in B0 Check on these components.

	 For the HIA translator, the B0 Check step must not be performed.

• Perform the proof of these components. If this rule is not mandatory in
order to perform the translation into target language, it is the only guarantee of the
product code quality.

The translation result of a code not 100% proven is not guaranteed.

4.1.5 Unitary Translation of the Produced Code

Select the four implementations of the project and select Translator. In the window
displayed, select the target language and Selected Only.

1Machine that enables implementing inputs/outputs, described in the Appendix A

24 Atelier B Translators - User Manual

MACHINE

stack interface(nb items)

CONSTRAINTS

nb items : NAT &

nb items >= 1

OPERATIONS

demonstration = skip

END

IMPLEMENTATION

stack interface 1(nb items)

REFINES

stack interface

IMPORTS

stack(nb items),

display stack(nb items)

SEES

BASIC IO

OPERATIONS

demonstration =

BEGIN

/*? Display the empty stack ?*/

STRING WRITE("Display of the empty stack :") ;

display("EMPTY STACK", the stack, top of stack) ;

/*? Fill the stack ?*/

STRING WRITE("Fill the stack and then display it

:\n") ;

VAR ii IN

ii := 1 ;

WHILE (ii <= nb items) DO

push(ii) ;

ii := ii + 1

INVARIANT

ii : NAT & ii >= 1 &

ii <= (nb items + 1)

VARIANT

nb items + 1 - ii

END

END ;

/*? Display the full stack ?*/

display("FULL STACK", the stack, top of stack) ;

/*? Empty the stack ?*/

STRING WRITE("Empty the stack then display it

:\n") ;

VAR ii IN

ii := 1 ;

WHILE (ii <= nb items) DO

pop ;

ii := ii + 1

INVARIANT

ii : NAT & ii >= 1 &

ii <= (nb items + 1)

VARIANT

nb items + 1 - ii

END

END ;

/*? Display the empty stack ?*/

display("EMPTY STACK", the stack, top of stack)

END

END

Figure 4.3: Specification and implementation of the interface stack component

OPERATING SCENARIOS 25

MACHINE

demo

OPERATIONS

demo stacks =

skip

END

IMPLEMENTATION

demo 1

REFINES

demo

IMPORTS

BASIC IO,

interface A.stack interface(3),

interface B.stack interface(4)

OPERATIONS

demo stacks =

BEGIN

STRING WRITE("-- Beginning of the test\n\n") ;

STRING WRITE(

"---\n") ;

STRING WRITE(

"Demonstration with a stack of maximum size 3\n") ;

STRING WRITE(

"---\n") ;

interface A.demonstration ;

STRING WRITE(

"\n\n---\n") ;

STRING WRITE(

"Demonstration with a stack of maximum size 4\n") ;

STRING WRITE(

"---\n") ;

interface B.demonstration ;

STRING WRITE("-- End of the test\n\n")
END

END

Figure 4.4: Specification and implementation of the demo component

26 Atelier B Translators - User Manual

Figure 4.5: Project dependency graph

4.1.6 Project linking

Select implementation demo_1 and press Translator. From the window displayed, select
the target language and All.

The linker creates a module responsible of the project start-up (the start-up module).
When used in the Atelier B GUI∗ , this module takes the same name as the project.

4.1.7 Compiling and Executing the target code

Open a session on the target machine. In this example, the target system is identical to
the development system (both are Unix systems), the target language is Ada and the gnat
Ada compiler is used.

Move to the directory where the files are translated, and type make. Figure 4.6 provides
an example of the display obtained.

Warning: The translation of this project with the translator provided with the 3.6 version
of Atelier B leads to a translator error.

It is then possible to execute the project. Figure 4.7 presents the result of this execution.

4.2 Developing a Heterogeneous B/Target Language Project

	 This section does not apply to the HIA translator, that contains some
specificities described in paragraph 4.3.

Just like an autonomous project, a heterogeneous project must comprise an entry point.
This entry point is a software component(named package in Ada or module in C/C++)

OPERATING SCENARIOS 27

/home/ATELIER/B/stack/lang% ls

DEMO PILES.adb basic io.ads stack interface.blf stack.bod

DEMO PILES.bod demo.adb stack interface.bod stack.str

display stack.adb demo.ads stack interface.str sets.adb

display stack.ads demo.blf makefile sets.ads

display stack.blf demo.bod makefile.blf sets.bod

display stack.bod demo.str stack.adb sets.str

display stack.str stack interface.adb stack.ads

basic io.adb stack interface.ads stack.blf

/home/ATELIER/B/stack/lang% make

gcc -I/home/ATELIER/B/LIBRARY/lang -c DEMO STACKS.adb

gcc -I/home/ATELIER/B/LIBRARY/lang -c sets.adb

gcc -I/home/ATELIER/B/LIBRARY/lang -c demo.adb

gcc -I/home/ATELIER/B/LIBRARY/lang -c basic io.adb

gcc -I/home/ATELIER/B/LIBRARY/lang -c stack interface.adb

gcc -I/home/ATELIER/B/LIBRARY/lang -c stack.adb

gcc -I/home/ATELIER/B/LIBRARY/lang -c display stack.adb

gnatbl DEMO STACKS.ali -o DEMO STACKS

/home/ATELIER/B/stack/lang% ls -l DEMO STACKS

-rwxr-xr-x 1 ATELIER bin 205899 May 17 11:35 DEMO STACKS*

Figure 4.6: Compilation of an Ada code produced by the Ada translator

allowing the creation of the physical instances of the components and their correct initial-
ization. It then allows access to all these instances.

This package exports an INITIALISATION procedure and a, depending on the target lan-
guage :

• In Ada, a this object.

• In C++, an entry object.

• In C, an entry structure.

The INITIALISATION procedure creates the physical instances, and this/entry is used to
reference project objects. Thus, this/entry references the instance of the project entry
point (i.e, the instance of demo in this example), and then it is possible to recursively scan
the dependency graph of the project by applying the following rule:

• If instance I of the graph is reached thanks to path Λ.

• If I uses2 an instance J

• Then instance J is reached by path Λ.ref_J in Ada or Λ->ref_J in C/C++.

In this way, by referring to the dependency graph illustrated by figure 4.5 on page 24, it
is possible to build a table that assigns to each physical instance of the project an “access
path”. Figure 4.8 presents this table for our example.

2In the IMPORTS, SEES or EXTENDS meaning

28 Atelier B Translators - User Manual

-- START OF TEST

Demonstration with a stack of maximum size 3

Display the empty stack: Expected result: STACK EMPTY

Effective result:

-- the stack is empty --

The stack is filled and displayed:

Expected result: STACK FULL

Effective result:

(bottom of stack) 1 2 3 (top of stack)

The stack is emptied and displayed:

Expected result: STACK EMPTY

Effective result:

-- the stack is empty --

Demonstration with a stack of maximum size 4

Display the empty stack: Expected result: STACK EMPTY

Effective result:

-- the stack is empty --

The stack is filled and displayed:

Expected result: STACK FULL

Effective result:

(bottom of the stack) 1 2 3 4 (top of the stack)

The stack is emptied and displayed:

Expected result: STACK EMPTY

Effective result:

-- the stack is empty --

-- END OF TEST

Figure 4.7: Executing the Ada program

Instance Ada acces path C,C++ acces path

demo this entry

BASIC_IO this.ref_BASIC_IO entry→ref_BASIC_IO

interface_A.stack_interface this.ref_interface_A entry→ref_interface_A

interface_B.stack_interface this.ref_interface_B entry→ref_interface_B

stack created by entry→ref_interface_A

interface_A.stack_interface this.ref_interface_A.ref_stack →ref_stack

stack created by entry→ref_interface_B

interface_B.stack_interface this.ref_interface_B.ref_stack →ref_stack

display_stack created by entry→ref_interface_A

interface_A.stack_interface this.ref_interface_A.ref_stack →ref_display_stack

display_stack created by entry→ref_interface_B

interface_B.stack_interface this.ref_interface_B.ref_stack →ref_display_stack

Figure 4.8: Correspondence between the physical instances of the project and their access
path in Ada, C and C++

OPERATING SCENARIOS 29

It is then possible to call the component operations, without forgetting to send them as
the first argument, the implicit instance parameter, i.e, the pointer that allows them to be
reached. In this way, it is possible to call the component method display for component
display_stack created by interface_A by writing the following code:

Language Code

Ada display_stack.display(this.ref_interface_A.ref_display_stack, . . .) ;

C display_stack->display(entry->ref_interface_A->ref_display_stack, . . .) ;

C++ entry->interface_A->display_stack->display(. . .)

4.3 Developement of a Heterogeneous B/HIA project

	 This section applies to the HIA translator only. The development of
heterogeneous projects for the other translators is described in 4.2

The code generated by the HIA translator is quite simple and close from the B0. A
package is created for each instance of a component. Each package has the same name
as the associated component, prefixed by the rename component prefix, followed by a ’_’
character.

The constants, the formal parameters and the components variables are translated in the
package. The operations have the same name and signature as in B.

Therefore, the development of a heterogeneous project B/HIA does not require additional
work compared to a Ada “HIA” native development.

30 Atelier B Translators - User Manual

Chapter 5

Complete List of Services

5.1 Unitary Translation of an Implementation

trad [OPTIONS] -i nom_implementation[.extension], where OPTIONS is a combination
of the options presented in table 5.2 and trad is given table 5.1.

Translator Software
Ada tbada
HIA tbhia
C++ tbcpp
C tbcpp -c

Figure 5.1: Translation of an implementation from the command line

5.2 Project Linking

trad [OPTIONS] -o executable_name -e spec_input_point -E bed_path
where OPTIONS is a combination of the options presented in table 5.3 and trad is given by
table 5.1.

Remark: An option is used to change the name of the target compiler when performing
linking. The produced makefile file instances the variable ADA_COMPILE (or CPP_COMPILE)
with this value. It is still possible to change this value afterwards, either by modifying it
directly in the makefile, or by passing it in the command line as shown in the example
below:

make ADA_COMPILE=my_ada_compiler
make CPP_COMPILE=my_c++_compiler

5.3 Translating a Project with Traces

	 This section applies to the Ada translator only

31

32 Atelier B Translators - User Manual

Option Semantics Default value Default value
Ada/HIA Translators C/C++ Translator

B Change the suffix of object files of type bod bdy

“package body”

D Prints configuration before translating

C Software compilation information

I Add a path to search for B source files
l Change the maximum length of producted

lines
80 80

O Change the suffix of object files of type blf blf

“B Link File”

P Change the output path ../lang ../lang

S Change the suffix of object files str spe

of type “package specification”

t Change the value in characters of a tabulation 4 4

T Ada : generate code whose execution yields
traces about called operations and parameter
values

v Verbose mode

V Software version number and usage

w Adds an “unproved component” message to
generated code (used automatically by Ate-
lier B)

Figure 5.2: Options available when performing the unitary translation of a component

Semantic tbada parameter tbcpp parameter
Default value Default value

Change the target compiler name A, gnatgcc T, gcc

Change the suffix of object files of type “package body” B, bod B, bdy
of type “package body”

Print names clashes with their resolution c c

Software compilation information C I

Print configuration before linking D D

Change the name of target linker K, gnatbl K, gcc

Change the maximum character length l, 80 l, 80
of a code line

Add search path for library object files L L

Change MAXINT value M, 2147483647 M, 2147483647

Change MININTvalue N, -2147483647 m, -2147483647

Linking for an heterogenous project n n

Change the suffix for object files O, blf O, blf
of type “B Link File”

Change the directory where files are created P, ../lang P, ../lang

Change the suffix for object files S, str S, spe
of type “package specifications”

Change the value in characters of a tabulation t, 4 t, 4

Create Ada code with traces about T non available
called operations and parameter values

Verbose mode v v

Version number and software usage V V

Figure 5.3: Options available during linking

COMPLETE LIST OF SERVICES 33

The -T option of the Ada translator is used to perform a project translation with traces.
This option allows:

• In a unitary translation, to request a module translation with the production of
traces.

• At linking level, to request the addition of trace modules when compiling is per-
formed.

A project that has been translated with traces, will produce a complete trace of the
function calls when it is executed. This trace is produced in the .trace file, located in
the directory where the project is started. This file, identifies:

• Function calls, that display the implicit instance as well as the value of input pa-
rameters.

• Function outputs, with a display of the implicit instance as well as the value of
output parameters.

Thus, a translation with traces allows the user to monitor the progress of their project
precisely, without needing to add instructions for this purpose in the B source code.

5.4 Restriction of translators use

Warning: The ADA, C and C++ translators provided in version 3.6 of Atelier B are
experimental. Their goal is to show that it is possible to translate B0 implementations
into classical programming languages. Their use is then not guaranteed.

The aim of this section is to define all the translator known anomalies.

• Package name:

The ADA translators accept to generate packages having the same name as the
predefined packages of the language. These packages cannot be compiled. To get
around this anomaly, give to the B components a different name from the predefined
ADA packages ones.

• Translation of the arrays:

The arrays translation into ADA using the reusable components (machines of the
L ARRAY family) may be incorrect. The ADA translator can allocate a big space
for the table (integer) and then overload the memory.

• Comparison between record fields of enumerated type:

When comparing (’=’ or ’/=’) two enumerated or record tables, which are themselves
record field coming from an external machine, the translators wrongly translate:
rec’field = enum instead of: mch.”=”(rec’field, enum).

• Set formal parameters:

The translation of set formal parameters using the translators provided with Ate-
lier B is sometimes incorrect. It is not advised to use the same name for different
set formal parameters.

34 Atelier B Translators - User Manual

• Use of the reusable components:

The reusable components provided with Atelier B use set formal parameters. As a
consequence of the previously mentionned anomaly, their use with the ADA, C and
C++ translators may lead to translator error or to a false target code that cannot
then be executed.

Chapter 6

Glossary

API Application Program Interface. The external interface provided by a system or a
library.

Batch Mode An Atelier B command-line operating mode executing automatic proce-
dures described in the form of command files.

GUI Graphical User Interface. This interface is graphical, the interface in text by com-
mand line mode is the batch mode.

Offensive code An offensive code is a code which assumes that the user obeys a “con-
tract”, i.e, that certain conditions are met. In this way, these conditions are not
tested in the code. In C, the strcpy and strcmp type functions are examples of an
offensive code as they do not verify the integrity of their arguments (memory fields
allocated by the user, strings ending with \0, . . .).

SCCS (Source Code Control System). A set of tools that allows the management of source
files and, by extension, the management of binary files resulting from compiling these
source files.

Shell An interface program between the user and the operating system. In Unix, the
main shells are sh, ksh, bash and csh.

35

36 Atelier B Translators - User Manual

Appendix A

Basic Machines

A.1 Principle

A.1.1 Definition

A basic machine is a machine with a specification in B which is directly implemented
in the target language.

A.1.2 Usefulness

Basic machines are used to implement functions that cannot be performed in B0. Most
of the time, these functions are the ones that are close to system level: input/output,
dynamic memory management,

Atelier B is supplied as standard with a collection of basic machines that allow the creation
of B projects that interact with an operator and which use complex data structures.
Sub-section A.2 describes these machines. However, an Atelier B user may still need to
implement his own basic machines. Sub-section A.3 describes how to perform this task.

A.2 Description of the Basic Machines Delivered with Ate-
lier B

Table A.1 provides the list of the basic machines supplied with Atelier B. Manual [ATB2]
provides a complete description of these machines: the reader who wishes to find more
information about the use of these machines may refer to it.

Some specification functionnalities can only be implemented through basic machines. For
instance, the only way to implement a “dynamic” array 1 is to import BASIC_ARRAY_VAR
(one dimension)(or BASIC_ARRAY_RGE two dimensions).

A.3 Writing a Basic Machine

A basic machine written by the user comprises four elements:
1i.e. a table whose size is machine parameter dependent.

37

38 Atelier B Translators - User Manual

MACHINE DESCRIPTION
BASIC_ARRAY_RGE Implementing a two dimensional table
BASIC_ARRAY_VAR Implementing a one dimensional table
BASIC_IO Basic Inputs/Outputs

Figure A.1: Basic machines supplied with Atelier B

1. A specification in B.

2. An interface (or specification), written in target language

3. A “package body”, written in target language

4. A file in “B Link File” format destined for the linker.

The easiest way to write a basic machine is as follows :

1. Write the specification in B.

2. Write an empty shell implementation, i.e, where the body of all operations contains
skip.

3. Use Atelier B to translate the implementation.

4. Keep the B link file, and fill the obtained skeletons with the desired code.

A.3.1 The B Specification writing method

The B specification is written according to the usual rules that apply when writing a
component in B language. It is interesting to write a specification that describes the
effect of the basic machine’s operations as precisely as possible, rather that limiting the
specification to empty shells (i.e, skip) for the specification. This way, the proof mech-
anism guarantees the author of the basic machine’s Ada code that a certain number of
constraints are met, making it possible to write offensive∗ code.

A.4 Target code (interface and body) writing method

Target code must comprise a package specification and the package body, located in two
files. The respective default extensions of these two files are given in table 5.2. If the
Translator options changing these extensions2 are used, it is important to ensure that this
change is also made to the extensions of files that make up the basic machines. Paragraphs
A.4.1, A.4.2, A.4.3 and A.4.4 describe target code writing methods for the Ada, HIA, C++
and C translators.

2These options are described in Chapter 5.

BASIC MACHINES 39

Type B0 Type Ada/HIA Type C/C++
INT INTEGER T_int
NAT INTEGER T_nat
NAT1 INTEGER T_nat
BOOL BOOLEAN T_bool
STRING STRING T_string
formal parameter 	 generic T_set *
of set type package item (ADA)

	 Sub-type (HIA)
array array T_array_x * x = array. dim

Figure A.2: Translation of the B0 types in Ada, HIA, C and C++

A.4.1 Target Code writing method for Ada

	 This section applies to the Ada translator only

• The name of the package is the same as the name of the B specification, and it is
not case sensitive (uses upper or lower case letters). However, the filenames used
must be in lower case.

Let P be this name.

• Package P must define:

– Type TYPE_P which is a record that must comprises an initialisation field
of BOOLEAN type. In this record, will be placed all the data structures required
for modeling instances of each machine.

– Type PTR_P , is a “pointer to P” type.

– An IMPORTS procedure which takes as input the this parameter that is a PTR_P
type and which describes the instance to import, followed by as many input
parameters as there are scalar type formal parameters. Figure A.2 shows the
correspondence between B0 and Ada types.

– An INITIALISATION procedure which takes as input a this parameter that is
a PTR_P type and which describes the initialisation of the instance.

– As many procedures as there are machine operations. The procedures take the
same name as in the B specification, preceded by the name of the machine in
lower case, framed by the # characters (i.e, in #machine#operation format).
Their parameters are obtained as follows:

∗ The first parameter, called the implicit instance, of type TYPE_P and points
to the component instance where the operation will be performed.

∗ Then come the operation’s input parameters, in the order of their declara-
tion in B. These are in mode parameters. The types are obtained as shown
in the table in figure A.2.

∗ Then come the operation’s output parameters, in the order of their decla-
ration in B. These are in out mode parameters. The types are obtained
as shown in the table in figure A.2.

40 Atelier B Translators - User Manual

A.4.2 Target code writing method for HIA

	 This section applies to the HIA translator only

• The package name is the same as the name in B specification, using indifferently
upper or lower cases. However, the filenames used must be in lower cases. Let P be
this name.

• Package P must define :

– A clause with for each required machine.

– The translation of the INITIALISATION procedure, located in the initialisation
function of the package.

– As many procedures as there are machine operations. The procedures have the
same name as in the B specification, preceded by the machine name in lower
cases, framed by the # characters (i.e, in #machine#operation format). Their
parameters are obtained as follows :

∗ The operation’s input parameters, in the order of their declaration in B.
These are parameters of in mode. The types are obtained as shown in the
table in figure A.2.

∗ The operation’s output parameters, in the order of their declaration in B.
These are parameters of in out mode. The types are obtained as shown
in the table in figure A.2.

A.4.3 Target code writing method for C++

	 This section applies to the C++ translator only

• The name of the class is the same as the name of the B specification, prefixed by T_

Let P be this name.

• Class T_P must define:

– Class TYPE_P which must contain an initialisation field of type T_bool.
In this class will be placed all of the data structures required for modeling
instances of each machine.

– An IMPORTS member function which describes the instance to import, followed
by as many input parameters as there are scalar type formal parameters. Figure
A.2 shows the correspondence between B0 and C++ types.

– An INITIALISATION member function which describes the initialisation of the
instance.

– As many member functions as there are machine operations. The functions have
the same name as in the B specification, preceded by the name of the machine
in lower case, framed by the # characters (i.e, in #machine#operation format).
Their parameters are obtained as follows:

BASIC MACHINES 41

∗ The operation’s input parameters, in the order of their declaration in B.
These are in mode parameters. The types3 are obtained as shown in the
table in figure A.2.

∗ Then come the operation’s output parameters, in the order of their decla-
ration in B. These are in out mode parameters. The types are obtained
as shown in the table in figure A.2.

A.4.4 Target code writing method for C

	 This section applies on the C translator only

• The name of the pseudo-class is the same as the name of the B specification, prefixed
by T_

Let P be this name.

(The pseudo-class is a structure which is only accessed through functions, prefixed
by the class name, and which emulate the methods of a real class.)

• Pseudo-class T_P must define :

– An initialisation field of type T_bool.
– A field for each data structures required for modeling instances of each machine

(formal parameter, concrete variable, . . .). Field names are prefixed by the
name of the machine, framed by # characters.

• Methods of the pseudo-class T_P are emulated by the following functions :

• A new_T_P function+. It is the equivalent of the class constructor. It takes as input
a parameter _this of type T_p *.

• A T_P_IMPORTS function which takes as input a parameter _this of type T_P *, fol-
lowed by as many input parameters as there are scalar or set type formal parameters.
Figure A.2 shows the correspondence between B0 and C types.

• A T_P_INITIALISATION function which takes as input a parameter _this of type
T_P * and which describes the initialisation of the instance.

• As many functions as there are machine operations. The functions have the same
name as in the B specification, preceded by the name of the machine in lower
case, framed by the # characters, and the pseudo-class name (that is to say, in
the #machine#T_P_operation format). Their parameters are obtained as follows:

– The first parametert is _this of type T_P *.
– The operation’s input parameters, in the order of their declaration in B. These

are in mode parameters. The types4 are obtained as shown in the table in
figure A.2.

– Then come the operation’s output parameters, in the order of their declaration
in B. These are in out mode parameters. The types are obtained as shown in
the table in figure A.2.

3Classes T set and T array are defined in predefined components installed with the translator
4Classes T set and T array are defined in builtin components installed with the translator

42 Atelier B Translators - User Manual

--*** *****

--

--Basic machine BASIC IO for ADA target language

--

--(C) 1996 STERIA

--

--Version @(#) basic io.blf 1.2 (date : 22 Mar 1996)

--

--*** *****

BEGIN CLASS

-- Machine name

BASIC IO

BEGIN LEVEL 1 -- Class level

-- operations

INTERVAL READ

INT WRITE

BOOL READ

BOOL WRITE

CHAR READ

CHAR WRITE

STRING WRITE

END LEVEL 1

END CLASS

Figure A.3: Example of a “B Link File”

A.4.5 The “B Link File”

The “B link File” is made of several sections delimited by BEGIN_SECTION_NAME and
END_SECTION_NAME keywords. These sections can be empty or even not be present. They
contain data used to manage name conflicts that occur when linking various modules as
well as the conflicts with the target language. They also enable to identify the array and
record types and the constants exported by the module.

If the code of the basic machine is correct and uses valid identifiers for the chosen target
language, the user only has to give the machine name (CLASS section), and to fill in the
section LEVEL_1 of CLASS with the names of the operations exported by the machine.

This way, the name of the operations exported by the machine will never clash with the
other modules names.

	 Beware that for the Ada and HIA translators, and contrary to Ada
language conventions, operations names are case sensitive, i.e, the usage
of upper and lower case letters shown in the basic machine B language
source must be followed.

Figure A.3 provides an example of the “B Link File” provided for the basic machine
BASIC_IO.

Appendix B

B0 specifities accepted by the HIA
translator

B.1 Introduction

The HIA translator uses its own B0 language. These specifities were introduced:

• On the one hand, because of the explicit typing per arrays and records identifier,

• On the other hand, because we want to generate simple code, and especially, we
want the Ada packages to be close to the B components by gathering the constants
and formal parameters declarations.

We will name this language HIA-B0 in the rest of this chapter.

B.2 Arrays translation

B.2.1 Principle

To be translated by the HIA translator, an array must have been explicitly typed with an
identifier (this is a restriction compared to classical B0).

Such an identifier is a concrete constant that has been typed as equal to a B “array” type.

This B type defined in the clause PROPERTIES is used for the translation; the valuation is
ignored.

It is advised to copy the typing of the clause PROPERTIES in the clause VALUES to avoid
any confusion. The possibility to define a concrete constant of array type is an extension
according to the classical B0 language.

B.2.2 Example

To write in HIA-B0 the declaration of a var variable of type “ integers array, which index
are between 4 and 12 ”, we should write :

43

44 Atelier B Translators - User Manual

CONCRETE_CONSTANTS

array_type

PROPERTIES

array_type = (4..12) --> INT / * B0-HIA extension * /

VALUES

array_type = (4..12) --> INT / * unused by the translator * /

CONCRETE_VARIABLES

var

INVARIANT

var : array_type / * explicit typing with an identifier as ruled by HIA-B0 * /

INITIALISATION

var := (4..12)*{1}

B.3 Record translation

B.3.1 Principle

To be translated by the HIA translator, a record must have been explicitly typed with an
identifier (this is a restriction compared to classical B0).

Such an identifier is a concrete constant that has been typed as equal to a B “record”
type.

This B type defined in the clause PROPERTIES is used for the translation; the valuation is
ignored.

It is advised to copy the typing of the clause PROPERTIES in the clause VALUES to avoid
any confusion. The possibility to define a concrete constant of array type is an extension
according to the classical B0 language.

B.3.2 Example

To write in HIA-B0 the declaration of a var variable of type “record”, which the first tab
field is of type “integer array”, which index are between 4 and 12, and the second valid
field is of ’boolean’ ”, we should write:

CONCRETE_CONSTANTS

array_type,

record_type

PROPERTIES

array_type = (4..12) --> INT / * HIA-B0 extension * / &

record_type = struct(

tab : array_type,

valid : BOOL) / * HIA-B0 extension * /

VALUES

array_type = (4..12) --> INT ; / * unused by the translator * /

record_type = struct(

tab : array_type,

B0 SPECIFITIES ACCEPTED BY THE HIA TRANSLATOR 45

valid : BOOL) / * unused by the translator * /

CONCRETE_VARIABLES

var

INVARIANT

var : record_type / * explicit typing with an identifier as ruled by HIA-B0 * /

INITIALISATION

var := rec((4..12)*{1}, FALSE)

B.4 Formal parameters

The effective formal parameters are directly translated in the package of the concerned
instance. For example, if Mch is a B component having a scalar formal parameter param
and if the project’s two instances i1.Mch(5) and i2.Mch(10) ofmch are created, so:

• in the package i1_Mch a constant param with value 5 is defined

• in the package i2_Mch a constant param with value 10 is defined

The effective formal parameters are then declared in the associated packages. As a conse-
quence, they have the scope of these packages.

Now, let us assume that a component Mch1 uses a component Mch2(param2), and that
the valuation of param2 involves the data of Mch1, for example a constant cst1 of mch1:

param2 = Mch1.cst1

The value of Mch2.param2 then involves Mch1.cst1. But Mch1.cst1 is not visible from
the package Mch2 (as Mch1 uses Mch2, then the package Mch1 makes a with of Mch2 : Mch2
is then unable to make a with Mch1 without risking a cyclical dependancy).

It is not possible to compile the obtained code. More generally, we can see that it is not
possible to use non literal data for the valuation of the machine formal parameters.

Consequence : The effective formal parameters of the machines allowed in HIA-B0 are the
literals (integers or booleans).

46 Atelier B Translators - User Manual

Bibliography

[ANSI-C++] Le langage C++, troisième édition
Bjarne STROUSTRUP
Campus Press
ISBN 2-7740-0609-2

[CPP1] The C++ language, Addison-Wesley
Bjarne Stroustrup

[ANSI-C] The C language, ANSI normalisation
B.W. Kernighan et D.M. Ritchie

[ADA-83] Manuel de référence du langage de programmation Ada
Alsys
Février 1987

[ADA-95] Ada 95
Deuxième édition
John BARNES
Addisson-Wesley
ISBN 0-201-34293-6

[ADA1] Manuel de référence du langage de programmation Ada
Alsys
Février 1987

[ADA2] Ada, An Introduction. Ada reference manual.
Henry Ledgard
Springer-Verlag
ISBN 0-387-90568-5 et 3-540-90568-5

[ADA3] Ada programming manual
Integrated computer systems
NEW/8/80

[SPARK] High integrity Ada
The SPARK approach
John BARNES
Addisson-Wesley
ISBN 0-201-17517-7

[ATB1] Atelier B reference manual

47

48 Atelier B Translators - User Manual

[ATB2] Reusable components. Reference manual.

	Description of this manual
	Aim
	Required Prior Knowledge
	Overview of this Manuel
	How to use this Manual
	Conventions and syntax
	Related Documents

	Presentation of the Software
	Purpose
	Recommended Environment
	Provided Services
	Preface: Reasons for two-pass translation
	Complete translation of the entire B0 language
	Reliable and high performance translation
	Resolving implicitly glued data and renaming
	Creation of the component instances
	Valuation of formal parameters

	Automatic translation service of a B0 implementation into target language
	Linking service
	Case of an Autonomous Project
	Case of a heterogeneous project

	Basic Machines

	Use principles
	Operating Modes
	Using the Translator via the GUI*
	Translating a BO implementation
	Global project linking

	Using the translator in batch* mode
	Translating a B0 implementation
	Global project linking

	Using the Translator from the command line
	Compiling and Executing the Code Produced

	Inputs and Outputs
	Messages Generated by the Ada Translator
	Using the translator from the command line or the Batch mode*
	Using the translator from Atelier B's GUI*
	Files

	Precautions for Use
	Important Proof Related Warning
	Important Warning Relating to the Values of the MAXINT and MININT Constants
	Size of Lines Produced
	Compatibility of the Translator with Atelier B
	Naming Modules and Projects for the Ada and HIA Translators

	Operating scenarios
	Developing a native B project
	Principle
	Informal Example Specifications
	Project Architecture and B Code
	The stack component
	The display_stack component
	The stack_interface component
	The demo component

	Integrating Components into Atelier B
	Unitary Translation of the Produced Code
	Project linking
	Compiling and Executing the target code

	Developing a Heterogeneous B/Target Language Project
	Developement of a Heterogeneous B/HIA project

	Complete List of Services
	Unitary Translation of an Implementation
	Project Linking
	Translating a Project with Traces
	Restriction of translators use

	Glossary
	Basic Machines
	Principle
	Definition
	Usefulness

	Description of the Basic Machines Delivered with Atelier B
	Writing a Basic Machine
	The B Specification writing method

	Target code (interface and body) writing method
	Target Code writing method for Ada
	Target code writing method for HIA
	Target code writing method for C++
	Target code writing method for C
	The ``B Link File''

	B0 specifities accepted by the HIA translator
	Introduction
	Arrays translation
	Principle
	Example

	Record translation
	Principle
	Example

	Formal parameters

