
Atelier B

Proof Obligations

Reference Manual

version 3.7

ATELIER B
Proof Obligations Reference Manual
version 3.7

Document made by CLEARSY.

This document is the property of CLEARSY and shall not be copied, duplicated or
distributed, partially or totally, without prior written consent.

All products names are trademarks of their respective authors.

CLEARSY
ATELIER B maintenance

Parc de la Duranne
320 avenue Archimède

Les Pléiades III - Bât.A
13857 Aix-en-Provence Cedex 3

France

Tél 33 (0)4 42 37 12 99
Fax 33 (0)4 42 37 12 71

email : maintenance.atelierb@clearsy.com

Contents

1 Glossary 3

2 Introduction 5

2.1 General Format of Proof Obligations . 5

2.2 Introductory Example . 6

2.3 Effect of the Proof Obligations . 6

2.4 Overview of Proof Obligations . 7

3 Correctness of the Abstract Machine 9

3.1 Correctness of Inclusions . 9

3.2 Correctness of Assertions . 10

3.3 Correctness of the Initialisation . 12

3.4 Correctness of Operations . 14

4 Correctness of the Refinement 17

4.1 Correctness of Inclusions . 17

4.2 Correctness of Assertions . 19

4.3 Correctness of the Initialisation . 20

4.4 Correctness of Operations . 22

5 Correctness of the Implementation 27

5.1 Correctness of Imports . 27

5.2 Correctness of Valuations . 28

5.3 Correctness of Assertions . 29

5.4 Correctness of the Initialisation . 30

5.5 Correctness of Operations . 32

5.6 Correctness of Specifications of Local Operations 33

5.7 Correctness of Implementations of Local Operations 34

A Abstract Machine Proof Obligations 37

A.1 Inclusion in an Abstract Machine . 40

1

CONTENTS 1

A.2 Assertion in an Abstract Machine . 40

A.3 Initialisation in an Abstract Machine . 41

A.4 Operations in an Abstract Machine . 42

B Refinement Proof Obligations 43

B.1 Inclusion in a Refinement . 46

B.2 Assertion in a Refinement . 46

B.3 Initialisation in a Refinement . 47

B.4 Operations in a Refinement . 47

C Implementation Proof Obligations 49

C.1 Importing into an Implementation . 51

C.2 Valuation in an Implementation . 51

C.3 Assertion in an Implementation . 52

C.4 Initialisation in an Implementation . 52

C.5 Operations on an Implementation . 53

C.6 Specification of Local Operations in an Implementation 53

C.7 Implementation of Local Operation in an Implementation 54

2 Proof Obligations - Reference Manual

Chapter 1

Glossary

Vertical development: Set of B components linked by a REFINES clause.

Example:

MACHINE REFINEMENT REFINEMENT
MA MA 1 MA 2

REFINES REFINES
MA MA 1

...

In this case, the vertical development is formed from the MA, MA 1 and MA 2
components.

Instancing: Assigns a value to the parameters of an abstract machine during an in-
clude/import. The parameters of the instanced abstract machine that is included
or imported are called formal parameters, and the values that are assigned to them
are effective parameters.

Example:

MACHINE MACHINE
M1 M2(INTV, val)

INCLUDES CONSTRAINTS
M2(1 . . 100, 35) val ∈ INTV

... ...

Effective parameter: Refer to ”Instancing”.

Formal parameter: Refer to ”Instancing”.

Predicate: A predicate is a logical expression that is read like a plain language affirma-
tion. This kind of expression may be exact or inexact. Are considered predicates :
equations, inequations, inequalities, tests for belonging or inclusion. Are also con-
sidered predicates, a conjunction of two predicates, the disjunction of two predicates
and the negations of a predicate.

Example:

3

4 Proof Obligations - Reference Manual

The following expressions are predicates:

x3 “x is equal to 3”
5 < 2 “5 is strictly less than 2”
x ∈ {1, 2, 4} “x belongs to the set {1, 2, 4}”
x + y20 ∨ y < x “x + y2 is equal to 0 or y is strictly less than x”

The following expressions are not predicates:

x + y “the sum of x and y”
f(2) “the value of f in 2”
{1, 2, 4} “set {1, 2, 4}”
A ∪B “the union of A and B”

Checking Process: The Checking process checks the conformity of the product in rela-
tion to its specifications, throughout its specifications, throughout its development
(“Are we building the product correctly?”).

Chapter 2

Introduction

This document describes the B theory proof obligations:

Definition:

A proof obligation is a mathematical formula to be proven, in order to ensure
that a B component is correct.

B theory specifies the proof obligations that must be proven to ensure the correctness of
a given B component. To this end, the proof obligations assist the Checking process.

The proof obligations described in this document are mathematical formulas. To under-
stand their effect properly, it is necessary to have a good working knowledge of B and of
mathematical logic.

The proof obligations produced by the proof obligation generator in Atelier B are not
exactly the ones described in this document. The proof obligation generator transforms
theoretical formulas into normalized formulas (more numerous and simpler), that are ready
for efficient use by the Atelier B prover.

2.1 General Format of Proof Obligations

The B proof obligations B are self-sufficient, i.e., no implicit information must be used in
their demonstration. All of the proof obligations use the following structure:

H
⇒
P

where P and H are predicates. This formula means that it is necessary to prove the aim
P applying assumption H, H being generally a conjunction of predicates.

In B, the P predicate and some H assumptions are built by applying one (or more)
substitution(s) to a predicate. As B is a mathematical language, the substitutions and
the predicates considered are directly taken from the B source.

The reader may refer to the B language Reference Manual to find the meaning of the
application of a substitution to a predicate. Note that the application of an ”operation
call” substitution is made by replacing this call by the body of the operation specified in
the source abstract machine.

5

6 Proof Obligations - Reference Manual

2.2 Introductory Example

Let us consider the ”Example” machine below: it contains a ”val” status variable, that is
a natural integer, without limit values; it also defines an ”increment” operation, the role
of which is to add a 1 to the ”val” state:

MACHINE
Example

VARIABLES
val

INVARIANT
val ∈ N

OPERATIONS
increment =̂

begin
val : val + 1

end
END

B semantics require that the services provided by a component (in this case the service is
the ”increment” operation) should never invalidate the invariant. In this case, this means
that the application for the ”increment” operation must preserve the val ∈ N predicate.
The corresponding proof obligation is:

val ∈ N
⇒
[val : val + 1]val ∈ N

By applying the substitution, it becomes

val ∈ N
⇒
val + 1 ∈ N

If this formula is true (as well as all of the other proof obligations for the machine Example),
then the B component above is correct.

2.3 Effect of the Proof Obligations

Some concepts such as the feasibility of performing substitutions, performing operations
that do not belong to this definition of correctness in B. With one exception, the proof of
existence of entities defined in a B specification is not requested by the theory. The justi-
fication for this is that the proof of existence, generally difficult to achieve, and therefore
costly, will be performed by exhibiting a special case (the implementation) at the end of
the B development process.

The exception we mentioned above applies to refineable constants (those declared in an
ABSTRACT CONSTANTS clause), never assigned values, the feasibility of which must
be demonstrated explicitly.

As it is now established that the notion of B proof obligations is linked to this correctness,
it is this latter perspective that is presented here: the theoretical proof obligations for the
B language.

INTRODUCTION 7

2.4 Overview of Proof Obligations

The description of the proof obligations is split into three parts: abstract machines, re-
finements and implementations.

At this point, the problem of syntax correctness that is a precondition for semantic cor-
rectness is ignored. The B components mentioned later are therefore assumed to be
syntaxically correct (the B BOOK ”type check” concept).

The proof obligations relating to an abstract machine cover:

• the correctness of instance assignments when including machines (using the IN-

CLUDES clause): the effective instancing parameters must satisfy the constraints of
the included machine parameters;

• the correctness of assertions;

• the correctness of the initialisation: the initialisation must establish the machine
invariant (the machine invariant must be true after applying the initialisation sub-
stitution);

• the correctness of operations: the operations must preserve the invariant (the ma-
chine invariant must be true after applying the operation substitution, given that
the invariant was true previously); the operations must establish their postcondition.

The four categories of abstract machine proof obligations are again found for refinements.
However, in the case of a refinement, the correctness of the initialisation and the opera-
tions implies the initialisation/abstract operation procedure so that the relevance of the
refinement may be demonstrated. In addition, in the case of the correctness of an opera-
tion, it is not necessary to prove the postcondition : the correctness of the refinement is
enough.

• correcness of the instancing (a proof obligation similar to that of an abstract ma-
chine);

• correctness of assertions;

• correctness of the initialisation: the initialisation must establish the invariant of the
refinement (properties of the new variables and link invariant) without contra-
dicting the specified initialisation;

• correctness of operations: the operations must preserve the refinement invariant
(properties of the new variables and the link invariant) without contradicting
the specified operation;

The proof obligations for valuations and local operations are added to the four previous
categories of proof obligations for implementations. The relevance of the implementation
to the initialisation and the operations leads to proof obligations that are similar to the
ones for the refinements:

• correctness of the instancing when an import is made (the correctness of the proof
obligation is similar to that of an include action for an abstract machine);

8 Proof Obligations - Reference Manual

• correctness of the valuing of constants and abstract sets: the values must verify the
properties (explicit and implicit) of constants and abstract sets;

• correctness of assertions;

• correctness of the initialisation: initialisation must establish the invariant of the
implementation (properties of the new and link invariant) without contradicting
the specified operation;

• correctness of operations: operations must preserve the invariant of the implementa-
tion (properties of the new variables and the link invariant) without contradicting
the specified operation;

• correctness of local operation specifications: local operations must preserve the in-
variant of the imported machines; they must establish their postcondition;

• correctness of local operation implementations: local operations must preserve the
variables of the implementation and the imported machines without contradicting
their specification.

Chapter 3

Correctness of the Abstract
Machine

3.1 Correctness of Inclusions

Presentation:

The inclusion of machines in B is correct once the constraints on the parameters of the
formal parameters of the included machine are checked by the effective parameters specified
when instancing is defined.

The instancing of the machines referenced in the INCLUDES clause may be performed
from:

• abstract machine sets and constants, machines referenced in the USES clause and
machines referenced in the SEES clause,

• formal parameters for the abstract machine and the machines referenced in the USES

clause.

The properties of the various entities are specified by predicates in the PROPERTIES

clause for the abstract machine, machines referenced in the SEES clause and machines
referenced in the clause USES clause, and in the CONSTRAINTS clause for the abstract
machine and machines referenced in the USES clause. The various predicates must there-
fore be present in the assumptions relative to the correctness of inclusions.

Description of the proof obligation:

The proof obligation that defines the correctness of an inclusion, to be proved for each
inclusion, is formed from the following assumptions:

• Parameter constraints for the abstract machine and machines referenced in the USES

clause.

• Properties of abstract machine constants, machines referenced in the SEES clause
and machines referenced in the USES clause.

To these assumptions are added the following implicit assumptions:

9

10 Proof Obligations - Reference Manual

• Any abstract set is defined as a non-empty sub-set of relative integers.

• Any set of formal parameters is defined as a non-empty sub-set of relative integers.

• Any listed set is defined as a set made up of all of these elements, the elements being
distinct two by two.

Within these assumptions, the aim is to prove:

The (instanced) constraint of the included machine.

Appendix § A.1 presents the mathematical formulation of this same proof obligation.

Example: Considering the following two machines:

MACHINE
MAIN(param10)

CONSTRAINTS
param10 < 10

INCLUDES
COUNT(param10)

END

MACHINE
COUNT(par)

CONSTRAINTS
par < 15

VARIABLES
tab

INVARIANT
tab ∈ (1 . . . par)→ BOOL

END

The proof obligation relating to the inclusion of the COUNT machine above must enable
the establishment that the constraint on this machine is correctly checked by the instancing
provided. The result is therefore:

param10 < 10 “Parameter constraints for the MAIN machine”
⇒
[par : param10](par < 15) “Set parameter instance by param10”

This becomes, by applying the substitution:

param10 < 10
⇒
param10 < 15

3.2 Correctness of Assertions

Presentation:

The assertions are lemmas for proof phases, i.e. they are intermediate theorems that may
be deduced from the invariant used to establish proof that the component is correct. These
predicates will be added (by conjunction) as an assumption for the proof obligations each
time that the invariant is present in these assumptions.

The machine assertions must be proven from the invariant and the properties of the entities
handled: local variables, variables of the machines referenced in the USES, INCLUDES,
and SEES clauses, constants, sets and parameters.

CORRECTNESS OF THE ABSTRACT MACHINE 11

The order of the assertions in the B specification text is important as the assertions are
proven in sequence by adding the previously proven assertions as assumptions.

Description of the Proof Obligation:

The proof obligation that defines the correctness of the assertions, to be proven for each
assertion in turn, is formed from the following assumptions:

• Constraints of abstract machine parameters and of machines referenced in the USES

clause.

• Properties of the constants for the abstract machine and the machines referenced in
the SEES, USES, INCLUDES clauses.

• Invariants and assertions for machines referenced in the INCLUDES clause, to which
the corresponding instance definition was applied.

• Invariant of the abstract machine and the machines referenced in the USES clauses.

• Assertions for machines referenced in the USES clause.

• Previous assertions (in the order of the text) for the abstract machine.

To these assumptions the following implicit assumptions are added:

• Any abstract set is defined as a non-empty sub-set of relative integers.

• Any formal parameter set list is defined as a non-empty sub-set of relative integers.

• Any listed set is defined as a set comprising all of its elements, and the elements are
distinct two by two.

Based on these assumptions, the aim is to prove.

the assertion

Appendix § A.2 presents the mathematical formulation of this same proof obligation.

Example: Considering the following abstract machine:

MACHINE
EXAM

VARIABLES
xx, yy, zz

INVARIANT
xx < 0 ∧
yy > 10 ∧
zz yy ∗ xx

ASSERTIONS
zz < 0 ;
zz ∗ xx > 0

END

12 Proof Obligations - Reference Manual

The proof obligations relating to the assertions are as follows:

xx < 0 ∧ “Machine invariant”
yy > 10 ∧
zzyy ∗ xx
⇒
zz < 0 “First assertion for the machine”

and
xx < 0 ∧ “Machine invariant”
yy > 10 ∧
zzyy ∗ xx ∧
zz < 0 “First assertion for the machine”
⇒
zz ∗ xx > 0 “Second assertion for the machine”

3.3 Correctness of the Initialisation

Presentation:

The initialisation of an abstract machine is correct when it establishes the invariant. After
applying this initialisation, the component invariant must be true; the aim of the proof is
therefore the application of the initialisation to the invariant.

The initialisation of the abstract machine can be specified from:

• abstract machine sets and constants, machines references in the USES, INCLUDES

and SEES clauses,

• formal parameters of the abstract machine and of the machines referenced in the
USES clauses,

• machine variables referenced in the USES and INCLUDES clauses,

• consult operations and the concrete variables of the machines referenced in the SEES

clause.

The properties of these entities are specified by predicates in the corresponding PROP-

ERTIES clauses, and in the CONSTRAINTS clauses for the abstract machine and from the
machines referenced in the USES clause. These predicates must therefore appear in the
assumptions relating to the correctness of inclusions. The definitions and the properties
of the variables are specified in the INVARIANT and ASSERTIONS clauses for the corre-
sponding abstract machines, this is why these predicates are also found in the assumptions.

Description of the proof obligation:

The proof obligation that defines the correctness of the initialisation contains the following
assumptions:

• Constraints for abstract machine parameters and for machine referenced in the USES

clause.

CORRECTNESS OF THE ABSTRACT MACHINE 13

• Properties for abstract machine constants and for machines references in the SEES,
INCLUDES and USES clauses.

• Invariants and assertions for machines referenced in the INCLUDES clauses, that
the corresponding instances have been applied to. 1

• Invariants and assertions of machines referenced in the USES and SEES clauses.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-set of relative integers.

• Any formal set list parameter is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as the set comprising all of its elements, and the elements
are separate two by two.

Using these assumptions, the aim is to prove:

The invariant of the abstract machine, after applying the initialisations of the
machines referenced in the INCLUDES clause, then the initialisation of the
machine.

Appendix § A.3 presents the mathematical formulation of this same proof obligation.

Example: Let us consider the following machine:

MACHINE
OP01

VARIABLES
v1

INVARIANT
v1 ∈ N ∧ v1− 1 ∈ N

INITIALISATION
v1 : 2

END

The proof obligation relating to correctness of the initialisation of the OP01 machine
above, must allow the establishment of the invariant. We will therefore obtain:

“No assumption in this example”
⇒
[v1 : 2](v1 ∈ N ∧ v1− 1 ∈ N)

Which becomes, by applying the substitution:

⇒
2 ∈ N ∧ 2− 1 ∈ N

1Note that there is a special case (seldom encountered) that applies to groups of machines linked by
USES clauses and simultaneously present in an INCLUDES clause: in this case, the invariants of these
machines that link the variables of a number of components are part of the aim to be proved rather than
the assumptions (cf. § A.3).

14 Proof Obligations - Reference Manual

3.4 Correctness of Operations

Presentation:

Each operation is defined by a header and a general substitution. The header may have
typing predicates for the output parameters, which constitute the postcondition of the
operation. The effect produced by the application of an operation is defined as the appli-
cation of the substitution to a given predicate. In order to demonstrate the correctness of
an operation, the predicate used is the invariant of the machine and the postcondition of
the operation:

An abstract machine operation is correct when it preserves the invariant -
i.e. the invariant was true prior to applying the operation, and it is still true
afterwards - and establishes its postcondition.

The proof obligation contains the invariant of the component in the Assumption, and its
aim is the invariant and the postcondition after application of the operation.

The substitution that defines an operation may be specified from:

• sets and constants from the abstract machine, and the machines referenced in the
USES clauses, INCLUDES and SEES,

• formal parameters for the abstract machine and the referenced machines in the USES

clause,

• variables for the abstract machine and the referenced machines in the USES and
INCLUDES clauses,

• accessing operations and concrete variables for the machines referenced in the SEES

clause.

The definitions and properties of the parameters and constants are the predicates specified
in the PROPERTIES and CONSTRAINTS clauses of the corresponding abstract machines.
These different predicates are therefore in the assumptions relating to the correctness of
the operation. The definitions and properties of the variables are the predicates specified
in the INVARIANT and ASSERTIONS clauses of the corresponding abstract machines,
this is why they are also part of the assumptions.

Description of the proof obligation:

As the proof obligation defines the correctness of an operation, it must be demonstrated
for each operation, and contain the following assumptions:

• Constraints of the abstract machine parameters and of the machines referenced in
the USES clause.

• Properties of the constants of the abstract machine, of machines referenced in the
SEES clause, machines referenced in the INCLUDES clauses and the machines ref-
erenced in the USES clause.

• Invariants and assertions for all of the machines referenced in the INCLUDES clause,
to which the corresponding instance definitions were applied.

CORRECTNESS OF THE ABSTRACT MACHINE 15

• Invariants and assertions from the abstract machine, machines referenced in the
USES and SEES clauses,

To these assumptions the following implicit assumptions are added:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any set list formal parameter is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as the set comprising all of its elements, and the elements
are separate two by two.

Using these assumptions, the aim to demonstrate is:

The invariant of the abstract machine and the postcondition of the operation,
after applying the substitution that defines the operation.

In Appendix § A.4 we present the mathematical formulation of this same proof obligation.

Example: Considering the following machine:

MACHINE
OP02

VARIABLES
v1

INVARIANT
v1 ∈ N ∧ v1− 1 ∈ N

INITIALISATION
v1 : 2

OPERATIONS
(ss ∈ N)←− increment =̂

pre
v1− 2 ∈ N

then
v1, ss := v1 + 1, v1− 1

end
END

The proof obligation relating to the correctness of the operation on machine OP02 above
must allow us to show that the invariant is preserved and that the postcondition is estab-
lished. We will therefore obtain:

v1 ∈ N ∧ “Machine invariant”
v1− 1 ∈ N
⇒
[pre v1− 2 ∈ N then v1, ss := v1 + 1, v1− 1 end](v1 ∈ N ∧ v1− 1 ∈ N ∧ ss ∈ N)

This will be changed, by applying the pre substitution, into

v1 ∈ N ∧
v1− 1 ∈ N
⇒
v1− 2 ∈ N ⇒ ([v1, ss := v1 + 1, v1− 1](v1 ∈ N ∧ v1− 1 ∈ N ∧ ss ∈ N))

16 Proof Obligations - Reference Manual

And by applying the substitution:

v1 ∈ N ∧
v1− 1 ∈ N
⇒
v1− 2 ∈ N ⇒ (v1 + 1 ∈ N ∧ v1 + 1− 1 ∈ N ∧ v1− 1 ∈ N)

Which is logically equivalent to

v1 ∈ N ∧
v1− 1 ∈ N ∧
v1− 2 ∈ N
⇒
v1 + 1 ∈ N ∧ v1 + 1− 1 ∈ N ∧ v1− 1 ∈ N

Chapter 4

Correctness of the Refinement

The correctness of the INCLUDES clauses and the proof of the assertions leads to proof
obligations similar to those in abstract machines.

As for abstract machines, correctness of the initialisation and the refinement operations
is established by establishing and preserving the invariant. However, the invariant of a
refinement is a link invariant that defines the properties of new variables in relation to
variables of the refined component. It is no longer adequate to apply a substitution to the
invariant, it is necessary to apply the substitution of the refinement and the substitution
of the refined component in combination, according to the double negation formula (see
below). It is then clear that correcting a refinement is not just a simple internal coher-
ence check, but an assurance that the refinement was developed in accordance with the
specification.

In all of the proof obligations described in this section, the properties of the constants of
previous refinements and of the abstract machine comprise properties of constants that are
specific to the component and the properties of the constants of the machines referenced in
the INCLUDES clause. In the same way, the invariants of previous refinements and of the
abstract machine are made up of specific invariants and instanced invariants of machines
referenced in the INCLUDES clause.

4.1 Correctness of Inclusions

Presentation:

In the same way as for abstract machines, the inclusion of machines in B is correct once the
constraints of the formal parameters of the included machine are checked by the effective
parameters specified when instancing is done.

The instancing of machines referenced in the INCLUDES clause may be performed from:

• sets and constants in the vertical development and the machines referenced in the
SEES clauses,

• formal parameters for the abstract machine.

The properties of these entities are specified in the PROPERTIES clauses of the corre-
sponding machine, and in the CONSTRAINTS clause of the abstract machine. These

17

18 Proof Obligations - Reference Manual

clauses must therefore be present in the assumptions relating the correctness of inclusions.

CORRECTNESS OF THE REFINEMENT 19

Description of the proof obligation:

The proof obligation that defines the correctness of an inclusion, to be demonstrated for
each inclusion of the refinement, is formed from the following assumptions:

• Constraints of the parameters of the abstract machine.

• Properties of the constants of the vertical development and of machines referenced
in the SEES clause.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of relative integers.

• Any formal set list parameter is defined as a non-empty sub-part of relative integers.

• Any listed set is defined as the set comprising all of its elements, and the elements
are distinct, two by two.

For these assumptions, the aim is to prove:

The constraint (instanced) of the included machine.

Appendix § B.1 presents the mathematical formulation of this particular proof obligation.

Example: Considering the following components:

MACHINE
MAIN(param10)

CONSTRAINTS
param10 < 10

END

REFINEMENT
MAIN 1(param10)

REFINES
MAIN

CONSTANTS
vscal

PROPERTIES
vscal ∈ N ∧
vscal < param10 /2

INCLUDES
COUNT(vscal)

END

MACHINE
COUNT(par)

CONSTRAINTS
par < 15

VARIABLES
tab

INVARIANT
tab ∈ (1 . . . par)→ BOOL

END

The proof obligation relating to the inclusion of the COUNT machine in the MAIN 1
refinement below must allow establishing that the COUNT constraint is indeed checked
by the instancing provided. This will show:

param10 < 10 ∧ “Parameter constraints for the abstract machine”
vscal < param10/2 ∧ “Properties of the refinement”
vscal ∈ N
⇒
[par : vscal](par < 15) “Constraints of COUNT and its instancing”

20 Proof Obligations - Reference Manual

This becomes, by applying the substitution:

param10 < 10 ∧
vscal < param10/2 ∧
vscal ∈ N
⇒
vscal < 15

4.2 Correctness of Assertions

Presentation:

Assertions are lemmas for the proof phases. These predicates will be added (by conjunc-
tion) as an assumption for the proof obligations, each time the invariant is present in these
assumptions.

Refinement assertions must be proven from the invariant and the properties of the entities
handled: refinement variables, concrete variables from the vertical development, variables
from the machines referenced in the INCLUDES clause, constants and sets.

The order of the assertions in the text of the B specification is Important, as the assertions
are proven in sequence, by adding the previous assertions already proven as assumptions.

Description of the proof obligation:

The proof obligation that defines the correctness of the assertions to be proved for each
assertion in the order, is formed from the following assumptions:

• Constraints of the abstract machine parameters,

• Properties of the vertical development constants for machines referenced in the SEES

and INCLUDES clauses.

• Invariants and assertions for machines referenced in the INCLUDES clause, that the
corresponding instancing was applied to.

• Invariants from the vertical development.

• Assertions from previous refinements and from the abstract machine.

• Previous assertions (in the order of the text) from the refinement.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any formal set list parameter is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as a set comprising all of its elements and the elements
taken two by two are distinct.

CORRECTNESS OF THE REFINEMENT 21

Based on these assumptions, the purpose to prove is:

the assertion.

Appendix § B.2, presents the mathematical formulation of this proof obligation.

Example: Considering the following components:

MACHINE
EXAM

VARIABLES
xx, yy

INVARIANT
xx < 0 ∧
yy > 10 ∧

END

REFINEMENT
EXAM 1

REFINES
EXAM

VARIABLES
zz

INVARIANT
zz ∈ Z ∧
zz yy ∗ xx

ASSERTIONS
zz < 0

END

The proof obligation relating to the assertion is as follows:

xx < 0 ∧ “Machine invariant”
yy > 10 ∧
zz ∈ Z ∧ “Refinement invariant”
zzyy ∗ xx
⇒
zz < 0 “Refinement assertion”

4.3 Correctness of the Initialisation

Presentation:

The initialisation of a refinement is correct when it establishes the refinement invariant,
without contradicting the initialisation of the refined component. This definition means
that the new initialisation must not produce exactly the same results as the previous one
but should rather ensure that the new initialisation values should not be in contradiction
with the previous ones. Generally this means that the domain of the values of common
variables may be restricted.

For example, if the initialisation of a vv variable in the abstract machine specifies an initial
value in the 1..3 range, the initialisation of the refinement may assign the initial value 1
to vv.

When an abstract variable is not retained in the refinement, it is generally refined via the
link invariant into a new variable. In this case, the initialisation of the new variable must
be performed without contradicting the initialisation of the abstract variable.

For example, the initialisation of an abstract variable SS is the empty set ∅, and the link
invariant specifies that the new variable num is the cardinal of SS, then the initialisation
of num is 0.

22 Proof Obligations - Reference Manual

The aim to prove is built from the invariant: to the contraposition of this invariant is
applied the initialisation of the refined component (especially to initialize the abstract
variables, in conjunction with the concrete variables); then, on the contraposition of the
predicate obtained, we will apply the initialisation of the refinement.

The initialisation of the refinement may be specified from:

• sets and constants from the vertical development, and machines referenced in the
SEES and INCLUDES clauses,

• abstract machine formal parameters,

• variables from machines referenced in the INCLUDES clause,

• concrete variables and operations for consulting machines referenced in the SEES

clause.

The definitions and properties of the parameters and constants are specified in the PROP-

ERTIES and CONSTRAINTS clauses for the corresponding abstract machines. These
different clauses are therefore found in the assumptions relating to the correctness of the
initialisation. The definitions and properties of the variables are specified in the clauses
INVARIANT and ASSERTIONS clauses of the corresponding abstract components, this
is why they are also in the assumptions.

Description of the proof obligation:

The proof obligation that defines the correctness of the initialisation contains the following
assumptions:

• Abstract machine constraint,

• Properties of vertical development constants, and machines referenced in the SEES

and INCLUDES clauses,

• Invariants and assertions for all machines referenced in the INCLUDES clause, to
which the corresponding instancing was applied.

• Invariants and assertions for machines referenced in the SEES clause.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any set list formal parameter is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as the set made up of all of its elements, and the elements
are distinct two by two.

Taking these assumptions, the aim is to show:

The refinement invariant, after contraposition, then the application of the ini-
tialisation of the refined component, contraposition, then application of the
initialisation of the refinement.

CORRECTNESS OF THE REFINEMENT 23

In Appendix § B.3, we will present the mathematical formulation of this same proof
obligation.

Example: Taking the following components:

MACHINE
OP01

VARIABLES
v1

INVARIANT
v1 ∈ 0 . . 10

INITIALISATION
any value where

value ∈ 1 . . 5
then

v1 : value
end

END

REFINEMENT
OP01 1

REFINES
OP01

VARIABLES
v2

INVARIANT
v2 2 * v1

INITIALISATION
v2 : 2

END

The proof obligation relating to the correctness of the initialisation of refinement OP01 1
above is built as follows: the contraposition of the invariant is:

v2 6= 2 ∗ v1

The initialisation of the refined component, applied to this predicate is

[any value where value ∈ 1 . . 5then v1 : value end](v2 6= 2 ∗ v1)

Which becomes, by applying the substitution any:

∀ value.(value ∈ 1 . . 5 ⇒ v2 6= 2 ∗ value)

The contraposition of the latter predicate is

∃ value . (value ∈ 1 . . 5 ∧ v22 ∗ value)

The application of the refinement initialisation allows us to instance v2 with 2, so that
the proof obligation to be proven will then be obtained

⇒
∃ value . (value ∈ 1 . . 5 ∧ 22 ∗ value)

4.4 Correctness of Operations

Presentation:

Each refinement operation is a new (more solid) version of a previously specified operation.
The headings of the two operations are identical, only the generalized substitution that
defines the effect of the operation is modified.

A refinement operation is correct when it preserves the invariant without con-
tradicting the specified operation, and when its precondition is less restrictive
than the specified precondition.

24 Proof Obligations - Reference Manual

It should be understood by this definition, that the new operation must not produce exactly
the same results as the previous one, but rather that the effects of the new operation must
not be in contradiction with the effects specified in the abstract operation. The aim of
the proof obligation will therefore be built around a double negative.

This definition means that the range of output values for the operation’s output variables
may be restricted.

For example, if the abstract operation returns a value in the range of 1..10, then the new
operation may return a value in the range 2..4.

As for operations on abstract machines, the aim to prove is based on the component
invariant; in the case of refinements an equals predicate is added (by conjunction), between
the output variables from the refinement operation, and the renamed output variables from
the specified operation. The aim to prove will then comprise

• the application of the refined operation to the negation of the application of the
abstract operation to the negation of the invariant.

The example below will clarify this complex definition.

The substitution that defines an operation may be specified from:

• sets and constants in the vertical development, and the machines referenced in the
INCLUDES and SEES clauses,

• formal parameters of the abstract machine,

• concrete variables from the vertical development,

• variables for machines referenced in the INCLUDES clause,

• concrete variables and operations for accessing machines referenced in the SEES

clause.

The definitions and properties of the parameters and constants are specified in the PROP-

ERTIES and CONSTRAINTS clauses of the corresponding operation. The different clauses
are therefore in the assumptions relating to operation correctness. The definitions and
properties of the variables are specified in the INVARIANT and ASSERTIONS clauses of
the corresponding components, this is why they are also stated as assumptions.

Description of the proof obligation:

The proof obligation that defines the correctness of an operation, to be proven for each
operation, contains the following assumptions:

• Parameter constraints from the abstract machine,

• Properties of the vertical development constants, and of machines referenced in the
SEES and INCLUDES clauses,

• Invariants and assertions for machines referenced in the INCLUDES clause, to which
the corresponding instance assignment was applied,

CORRECTNESS OF THE REFINEMENT 25

• Invariants and assertions from the vertical development and the machines referenced
in the SEES clause,

• Precondition of the operation in the abstract machine.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any formal set list of parameters is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as a set made up of all of its elements, and the elements are
distinct taken two by two.

Given these assumptions, the aim to prove is:

the refinement operation applied to the negation of the application of the
abstract operation on the negation of the invariant.

Appendix § B.4 presents the mathematical formulation of this same proof obligation.

Example: Given the following components:

MACHINE
OP01

VARIABLES
v1

INVARIANT
v1 ∈ N

INITIALISATION
v1 : 0

OPERATIONS
/* The operation returns the new value of v1,

that is greater than the previous one */
out ←− valv1 =̂

begin
any value where

value > v1
then

out, v1 : value, value
end

end
END

26 Proof Obligations - Reference Manual

REFINEMENT
OP01 1

REFINES
OP01

VARIABLES
v2

INVARIANT
v2 > v1

INITIALISATION
v2 : 1

OPERATIONS
/* The new value of v1 is already stored in v2,

it is therefore enough to return v2 and to prepare v2 for the next call */
out ←− valv1 =̂

begin
out, v2 : v2, v2+1

end
END

The first operation valv1 returns values that are always larger. The second operation
always returns the (arithmetical) successor of the previous return. The proof obligation
must therefore be able to show that the arithmetical successor is in fact a larger value
than the previous one.

The proof obligation relative to the correctness of operation valv1 on the OP01 1 refine-
ment above is built as follows: The invariant in conjunction with the predicate of equality
between the operation output parameter in OP01 and the operation output parameter in
OP01 1 is:

v2 > v1 ∧ outout′

This predicate shows what must always be true.

The contraposition of this formula is

v2 ≤ v1 ∨ out 6= out′

The predicate shows what must never occur.

The refined component operation (the abstract machine in this case), applied to this
predicate is

[any value where value > v1 then out, v1 : value, value end](v2 ≤ v1 ∨ out 6= out′)

This becomes, by applying any and : substitutions:

∀ value.(value > v1 ⇒ (v2 ≤ value ∨ value 6= out′))

This predicate shows the effect of the specified operation on what must never happen.

The contraposition of this latter predicate is

∃ value . (value > v1 ∧ (v2 > value ∧ valueout′))

The “value out′”equation allows us to logically simplify this predicate to become

out′ > v1 ∧ v2 > out′

CORRECTNESS OF THE REFINEMENT 27

This predicate represents what is never established by the operation specified on what
must never occur.

The application of the refinement operation allows us to instance out′ with v2 and v2 with
v2+1, this will give the following proof obligation:

v1 ∈ N ∧
v2 > v1
⇒
v2 > v1 ∧ v2 + 1 > v2

Note that v1 is the value returned by the previous call to the operation, v2 is the value
that will be sent back by the current call and v2+1 is the value that will be sent back by
the next call. There is in fact between these three values, an order relationship specified
in operation valv1 on the abstract machine.

28 Proof Obligations - Reference Manual

Chapter 5

Correctness of the Implementation

As when correcting a refinement, correcting an implementation is not just a simple check
on internal coherence, but the insurance that the implementation was developed in ac-
cordance with the the specification. The proof obligations relating to the correctness of
implementations are similar to those for refinements, to which are added the proof obli-
gation on the existence of refineable constants.

In the proof obligations described in this section, the properties of constants of previous
refinements and of the abstract machine are made up of properties of constants that are
specific to each of the components and of properties of constants of the machine referenced
in the INCLUDES clause by its components. In the same way, the invariants of the previous
refinements and of the abstract machine are made up of specific invariants and of instanced
invariants of machines referenced in the INCLUDES clause.

5.1 Correctness of Imports

Presentation:

In the same way as an inclusion in abstract machines, importing machines into B is correct
when the parameter constraints on the formal parameters of the imported machine are
checked by the effective parameters specified when the instances are set.

The instance setting for machines referenced in the IMPORTS clause may be performed
from:

• sets and constants from the vertical development and from machines referenced in
the SEES clause,

• formal parameters of the abstract machine.

The properties of these entities are specified in the PROPERTIES clauses on the corre-
sponding components and in the CONSTRAINTS clause of the abstract machine. These
clauses must therefore be demonstrated within the assumptions relating to correcting im-
ports.

Description of the proof obligation:

The proof obligation that defines the correctness of an importation, to be proven for each
implementation import, is made up of the following assumptions:

29

30 Proof Obligations - Reference Manual

• Abstract machine parameter constraints.

• Properties of the constants from the vertical development and of the machines ref-
erenced in the SEES clause.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-set of relative integers.

• Any formal set list parameter is defined as a non-empty sub-set of relative integers.

• Any listed set is defined as the set comprising all of these elements, and the elements
are distinct two by two.

Using these assumptions, the aim to prove is:

The (instanced) constraint of the imported machine.

Appendix § C.1 the mathematical formulation of this same proof obligation.

5.2 Correctness of Valuations

Presentation:

The valuation of constants and abstract sets defined in the abstract machine, in the
refinements and in the implementation must verify the properties of the various entities.

The valuation of the constants and sets may be performed from:

• sets and constants of machines referenced in the IMPORTS and SEES clauses.

The properties of these entities are specified in the PROPERTIES clauses of the machines
referenced in the IMPORTS and SEES clauses. These clauses must therefore be present
in the assumptions relating to correcting valuations.

Description of the proof obligation:

The proof obligation relating to the correctness of constants contains the following as-
sumptions:

• Properties of the constants of machines referenced in the SEES clause,

• Properties of constants of machines referenced in the IMPORTS clause.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any listed set is defined as the set made up of all of its elements, and with elements
that are distinct two by two.

Given these assumptions, the aim to prove is:

CORRECTNESS OF THE IMPLEMENTATION 31

The existence of constants that may be refined for the conjunction of properties
of abstract machine constants, refinements and the implantation to which the
valuation substitution was applied.

Appendix § C.2 presents the mathematical formulation of this same proof obligation.

Example: Taking the following components:

MACHINE
OP01

CONSTANTS
S1, c1

ABSTRACT CONSTANTS
c2

PROPERTIES
c1 ∈ 0 . . 10 ∧
c2 ∈ S1

END

IMPLEMENTATION
OP01 1

REFINES
OP01

VALUES
S1 1 . . 5 ;
c1 0

END

The proof obligation relating to the correctness of the valuation is:

⇒
∃ c2 . [S1, c1 : 1 . . 5, 0](c1 ∈ 0 . . 10 ∧ c2 ∈ S1)

By applying the substitution we will obtain:

⇒
∃ c2 . (0 ∈ 0 . . 10 ∧ c2 ∈ 1 . . 5)

5.3 Correctness of Assertions

Presentation:

The implementation assertions must be proven from the invariant and the properties of
the entities handled: local variables, abstract variables, variables of machines referenced
in the IMPORTS and SEES clauses, constants and sets.

Description of the proof obligation:

The proof obligations that define the correctness of an assertion, to show that for each
assertion in the order of text, is formed from the following assumptions:

• Constraints for abstract machine parameters,

• Properties of vertical development constraints and of machines referenced in the
SEES and IMPORTS clauses.

• Invariants and assertions for machines referenced in the IMPORTS clause, to which
the corresponding instancing was applied.

• Invariant in vertical development.

• Assertions on previous refinements and for the abstract machine.

• Previous assertions (in the order of the text) in the implementation.

32 Proof Obligations - Reference Manual

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any set list formal parameter is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as the set made up of all of its elements, and the elements
are distinct two by two.

Based on these assumptions, the aim to prove is:

the assertion.

Appendix § C.3 presents the mathematical formulation of these same proof obligations.

5.4 Correctness of the Initialisation

Presentation:

The initialisation of an implementation is correct when it establishes the invariant of the
implementation, without contradicting the initialisation of the implemented component.
This definition must be taken to mean that the new initialisation must not produce exactly
the same results as the previous one, but rather that the new initialisation values must not
contradict the previous ones. Generally this means that the value fields of the common
variables (the “concrete variables”in any vertical development) may be restricted.

The aim to prove is built from the invariant: to the contraposition of this invariant is ap-
plied the initialisation of the refined component (especially to initialize abstract variables,
in accordance with the concrete variables); then on the contraposition of the predicate
obtained, will be applied the initialisation of the implementation.

The initialisation of the implementation may be specified from:

• sets and constants from the vertical development and the machines referenced in the
IMPORTS and SEES clauses,

• formal parameters of the abstract machine,

• variables from the machines referenced in the IMPORTS clause,

• concrete variables and access operations on the machines referenced in the SEES

clause.

The definitions and properties of the parameters and constants are specified in the PROP-

ERTIES and CONSTRAINTS clauses of the corresponding abstract machines. These dif-
ferent clauses are therefore present in the assumptions relating to initialisation correct-
ness. The definitions and properties of the variables are specified in the INVARIANT and
ASSERTIONS clauses of the corresponding abstract machines, this is why they are also
present in the assumptions.

CORRECTNESS OF THE IMPLEMENTATION 33

Description of the proof obligation:

The proof obligation that defines the correctness of the initialisation contains the following
assumptions:

• Abstract machine parameter constraints,

• Properties of vertical development constants, and of machines referenced in the SEES

and IMPORTS clauses.

• Invariants and assertions for machines referenced in the IMPORTS clauses, to which
the corresponding instancing was applied.

• Invariants and assertions of machines referenced in the SEES clause.

To these assumptions are added the following implicit assumptions:

• Any abstract set is defined as a non-empty sub-part of the relative integers.

• Any set list formal parameter is defined as a non-empty sub-part of the relative
integers

• Any listed set is defined as the set comprising all of its elements, and the elements
are distinct taken two by two.

Given these assumptions, the aim to prove is:

The implementation invariant, after contraposition, then the application of the
initialisation of the refined component, contraposition, then the application of
implementation initialisation.

Appendix § C.4 presents the mathematical formulation of this proof obligation.

Example: Taking the following components:

MACHINE
OP01

VARIABLES
v1

INVARIANT
v1 ∈ 0 . . 10

INITIALISATION
v1 :∈ 1..5

END

IMPLEMENTATION
OP01 i

REFINES
OP01

VARIABLES
v2

INVARIANT
v2 2 * v1

INITIALISATION
v2 : 2

END

The proof obligation relating to the correctness of the initialisation of implementation
OP01 i above is built as follows: the contraposition of the link invariant is:

v2 6= 2 ∗ v1

34 Proof Obligations - Reference Manual

The initialisation of the specification, applied to this predicate is

[v1 :∈ 1 . . 5](v2 6= 2 ∗ v1)

Which becomes, by applying the substitution :∈:

∀ v1 0.(v1 0 ∈ 1 . . 5 ⇒ v2 6= 2 ∗ v1 0)

The contraposition of the latter predicate is

∃ v1 0 . (v1 0 ∈ 1 . . 5 ∧ v22 ∗ v1 0)

The application of the refinement initialisation allows setting instance v2 with 2, which
will give the proof obligation

⇒
∃ v1 0 . (v1 0 ∈ 1 . . 5 ∧ 22 ∗ v1 0)

5.5 Correctness of Operations

Presentation: Each implementation operation is a new (concrete) version of a previously
specified operation. The headings of the two operations are identical, only the generalized
substitution that defines the effect of the operation is modified.

An implementation operation is correct when it preserves the invariant without
contradicting the refined operation.

This definition should be understood to mean that the new operation must not produce
exactly the same results as the previous one, but rather that the effects of the new operation
must not contradict the effects specified in the abstract operation. The aim of the proof
obligation will therefore be built around a double negative.

As for refinement operations, the aim to prove is based on the implementation (link)
invariant in conjunction with an equals predicate between the implementation refinement
operation output variables and the specified operation’s renamed output variables. The
aim to prove will then comprise

• the application of the implementation operation up to the negation of the application
of the abstract operation, or up to the negation of the invariant.

The substitution that defines an operation may be specified from:

• sets and constants from the vertical development and machines referenced in the
IMPORTS and SEES clauses,

• abstract machine formal parameters,

• concrete variables (only) taken from the vertical development and the machines
referenced in the IMPORTS and SEES clauses.

CORRECTNESS OF THE IMPLEMENTATION 35

The definitions and properties of the parameters and constants are specified in the PROP-

ERTIES and CONSTRAINTS clauses of the corresponding components. These clauses are
therefore present in the assumptions relating to operation correctness. The definitions and
properties of the variables are specified in the INVARIANT and ASSERTIONS clauses of
the corresponding clauses, this is why they are also in the assumptions.

Description of the proof obligation:

The proof obligation that defines the correctness of an operation, to be proven for each
operation, contains the following assumptions:

• Abstract machine parameter constraints,

• Properties of the vertical development constants and of the machines referenced in
the SEES and IMPORTS clauses,

• Invariants and assertions of machines referenced in the IMPORTS clause, to which
the corresponding instancing was applied,

• Invariants and assertions from the vertical development, and machines referenced in
the SEES clause,

• Precondition of the operation in the abstract machine.

To these assumptions are added the following implicit assumptions:

• All abstract sets are defined as a non-empty sub-part of the relative integers.

• Any set list formal parameter is defined as a non-empty sub-part of the relative
integers.

• Any listed set is defined as the set comprising all of its elements, and the elements
are distinct two by two.

Based on these assumptions, the aim to prove is:

the implementation operation applied to the negation of the application of the
abstract operation to the negation of the invariant.

Appendix § C.5 presents the mathematical formulation of this same proof obligation.

5.6 Correctness of Specifications of Local Operations

Presentation: Local operations can be used in an implementation in order to factorise
B code. Local operations are both specified and implemented in the same implementation
and can only be used within this implementation.

A specification of a local operation is correct when it preserves the invariants
of the machines imported by the implementation, and establishes its postcon-
dition.

36 Proof Obligations - Reference Manual

On the one hand, a local operation can modify directly the variables of an imported
machine, hence this proof obligation. On the other hand, a local operation need not
preserve the implementation invariant.

Description of the proof obligation:

The proof obligation relating to the correctness of the specification of a local operation,
to be demonstrated for every local operation, contains the following hypothesis:

• Abstract machine parameter constraints,

• Properties of the vertical development constants and of the machines referenced in
the SEES and IMPORTS clauses,

• Invariants and assertions of machines referenced in the IMPORTS clause, to which
the corresponding instancing was applied,

• Invariants and assertions from the machines referenced in the SEES clause,

• B typing of the implementation concrete variables,

• Precondition of the specification of the local operation,

To these assumptions are added the following implicit assumptions:

• Every abstract set is defined as a non-empty sub-part of the relative integers.

• Every set formal parameter is defined as a non-empty sub-part of the relative inte-
gers.

• Every enumerated set is defined as the set comprising all of its elements, and the
elements are distinct two by two.

Based on these assumptions, the aim to prove is:

The body of the local operation specification, without its possible precondition,
preserves the invariants of imported machines and establishes its postcondition.

Appendix § C.6 gives the mathematical formulation of this proof obligation.

5.7 Correctness of Implementations of Local Operations

Présentation : The local operation specified in the LOCAL OPERATIONS clause are
implemented in the OPERATIONS clause of the same implementation.

An implementation of a local operation is correct when it preserves the equality
predicates between the modifiable variables of the local operation specification
and these same variables in the local operation implementation, without con-
tradicting the local operation specification.

CORRECTNESS OF THE IMPLEMENTATION 37

Description of the proof obligation:

The proof obligation relating to the correctness of the implementation of a local operation,
to be demonstrated for every local operation, contains the following hypothesis:

• Abstract machine parameter constraints,

• Properties of the vertical development constants and of the machines referenced in
the SEES and IMPORTS clauses,

• Invariants and assertions of machines referenced in the IMPORTS clause, to which
the corresponding instancing was applied,

• Invariants and assertions from the machines referenced in the SEES clause,

• B typing of the implementation concrete variables,

• Precondition of the specification of the local operation,

To these assumptions are added the following implicit assumptions:

• Every abstract set is defined as a non-empty sub-part of the relative integers.

• Every set formal parameter is defined as a non-empty sub-part of the relative inte-
gers.

• Every enumerated set is defined as the set comprising all of its elements, and the
elements are distinct two by two.

Based on these assumptions, the aim to prove is:

The implementation of the local operation applied to the negation of the appli-
cation of the specification of the local operation to the negation of the implicit
invariant of equality for the variables of the implementation and imported
machines, and for the output parameters of the local operation.

Appendix § C.7 presents the mathematical formulation of this proof obligation.

38 Proof Obligations - Reference Manual

Appendix

Appendix A

Abstract Machine Proof
Obligations

The following machines introduce the naming conventions that will be used to describe the proof
obligations linked to machine M1:

39

40 Proof Obligations - Reference Manual

MACHINE MACHINE MACHINE

M1(X1,x1) Ms(Xs,xs) Mu(Xu,xu)
CONSTRAINTS CONSTRAINTS CONSTRAINTS

C1 Cs Cu

SEES

Ms
SETS SETS SETS

S1 ; Ss ; Su ;
T1 {a1, b1} Ts {as, bs} Tu {au, bu}

ABSTRACT CONSTANTS ABSTRACT CONSTANTS ABSTRACT CONSTANTS

ac1 acs acu

CONCRETE CONSTANTS CONCRETE CONSTANTS CONCRETE CONSTANTS

cc1 ccs ccu

PROPERTIES PROPERTIES PROPERTIES

P1 Ps Pu

INCLUDES

Mi1(Ni1 , ni1),
Mi2(Ni2 , ni2)

USES

Mu
ABSTRACT VARIABLES ABSTRACT VARIABLES ABSTRACT VARIABLES

av1 avs avu

CONCRETE VARIABLES CONCRETE VARIABLES CONCRETE VARIABLES

cv1 cvs cvu

INVARIANT INVARIANT INVARIANT

I1 ∧ L1(avu,cvu) Is Iu

INITIALISATION INITIALISATION INITIALISATION

U1 Us Uu

ASSERTIONS ASSERTIONS ASSERTIONS

J1 Js Ju

OPERATIONS OPERATIONS OPERATIONS

u1 ← op1(w1) b= us ← ops(ws) b= uu ← opu(wu) b=
pre pre pre

Q1 Qs Qu

then then then
V1 Vs Vu

end end end
END END END

ABSTRACT MACHINE PROOF OBLIGATIONS 41

MACHINE MACHINE

Mi1(Xi1 ,xi1) Mi2(Xi2 ,xi2)
CONSTRAINTS CONSTRAINTS

Ci1 Ci2

SETS SETS

Si1 ; Si2 ;
Ti1 {ai1 , bi1} Ti2 {ai2 , bi2}

ABSTRACT CONSTANTS ABSTRACT CONSTANTS

aci1 aci2

CONCRETE CONSTANTS CONCRETE CONSTANTS

cci1 cci2

PROPERTIES PROPERTIES

Pi1 Pi2

USES

Mi2
ABSTRACT VARIABLES ABSTRACT VARIABLES

avi1 avi2

CONCRETE VARIABLES CONCRETE VARIABLES

cvi1 cvi2

INVARIANT INVARIANT

Ii1 ∧ Li1(cvi2 ,avi2) Ii2

INITIALISATION INITIALISATION

Ui1 Ui2

ASSERTIONS ASSERTIONS

Ji1 Ji2

OPERATIONS OPERATIONS

ui1 ← opi1(wi1) b= ui2 ← opi2(wi2) b=
pre pre

Qi1 Qi2

then then
Vi1 Vi2

end end
END END

The following notations are used:

A1
def C1 ∧ X1 ∈ P1(INT)

B1
def P1 ∧ S1 ∈ P1(INT) ∧ T1 ∈ P1(INT) ∧ T1{a1, b1} ∧ a1 6= b1

In the same way for the Mu, Ms, Mi1 and Mi2 machines.

42 Proof Obligations - Reference Manual

A.1 Inclusion in an Abstract Machine

Formula of the proof obligation:

The proof obligation below must be proven for each included machine (Mi1 and Mi2), this is
presented here for Mi1:

A1 ∧ “Parameter constraints for components”

Au ∧ “Parameter constraints for components used”

B1 ∧ “Properties of component constants”

Bu ∧ “Properties of constants in components used”

Bs “Properties of constants in components seen”

⇒

[Xi1 , xi1 : Ni1 , ni1]Ci1 “Instanced constraint of the included machine”

A.2 Assertion in an Abstract Machine

The assertion J1 is a succession of predicates that will be written as J11 , J12 , · · ·, J1k
.

Proof obligation formula:

The proof obligation below is to be proven for each assertion of J1 ; it is presented here for the J1j

for the 1 ≤ j ≤ k assertion:

A1 ∧ “Parameter constraints for components”

Au ∧ “Parameter constraints for components used”

B1 ∧ “Properties of component constants”

Bu ∧ “Properties of constants in components used”

Bs ∧ “Properties of constants in components seen”

Bi1 ∧ Bi2 ∧ “Properties of constants in included components”

[Xi1 , xi1 : Ni1 , ni1](Ii1 ∧ Li1 ∧ Ji1) ∧ “Invariants and assertions”
[Xi2 , xi2 : Ni2 , ni2](Ii2 ∧ Ji2) ∧ “of included components”

(Iu ∧ Ju) ∧ “Invariants and assertions for components used”

(I1 ∧ L1) ∧ “Machine invariant”

J11 ∧ · · · ∧ J1j−1 “Previous assertions”

⇒

J1j
“Assertion to prove”

ABSTRACT MACHINE PROOF OBLIGATIONS 43

A.3 Initialisation in an Abstract Machine

Mathematical formula of the proof obligation:

A1 ∧ “Parameter constraints for components”

Au ∧ “Parameter constraints for components used”

B1 ∧ “Properties of component constants”

Bu ∧ “Properties of constants in components used”

Bs ∧ “Properties of constants in components seen”

Bi1 ∧ Bi2 ∧ “Properties of constants in included components”

(Iu ∧ Ju) ∧ “Invariants and assertions for components used”

[Xi1 , xi1 : Ni1 , ni1](Ii1 ∧ Ji1) ∧ “Invariants and assertions”
[Xi2 , xi2 : Ni2 , ni2](Ii2 ∧ Ji2) ∧ “for components included”

(Is ∧ Js) “Invariants and assertions of seen components”

⇒

“Invariant after initialisation of machines included for the considered operation”
[[Xi1 , xi1 : Ni1 , ni1]Ui1 ; [Xi2 , xi2 : Ni2 , ni2]Ui2 ;U1](I1 ∧ Li1)

44 Proof Obligations - Reference Manual

A.4 Operations in an Abstract Machine

Mathematical formula of the proof obligation:

Let D1 be the typing predicates of the output parameters u1.

A1 ∧ “Parameter constraints for components”

Au ∧ “Parameter constraints for components used”

B1 ∧ “Properties of component constants”

Bu ∧ “Properties of component constants used”

Bs ∧ “Properties of component constants seen”

Bi1 ∧ Bi2 ∧ “Properties of constants in included components”

(Iu ∧ Ju) ∧ “Invariants and assertions in components used”

[Xi1 , xi1 : Ni1 , ni1](Ii1 ∧ Li1 ∧ Ji1) ∧ “Invariants and assertions”
[Xi2 , xi2 : Ni2 , ni2](Ii2 ∧ Ji2) ∧ “of included components”

(Is ∧ Js) ∧ “Invariants and assertions of seen components”

(I1 ∧ L1 ∧ J1) ∧ “Machine invariants and assertions”

Q1 “Operation precondition”

⇒

[V1](I1 ∧ Li1 ∧ D1) “Operation applied to the invariant and the postcondition”

Appendix B

Refinement Proof Obligations

The following machines introduce naming conventions that will be used to describe the proof
obligations linked to refinement Rn. M1 is the abstract machine, and R2, . . ., Rn-1 the refinements
prior to Rn.

45

46 Proof Obligations - Reference Manual

REFINEMENT MACHINE MACHINE

Rn(X1,x1) M1(X1,x1) Ms(Xs,xs)
REFINES

Rn-1
CONSTRAINTS CONSTRAINTS

C1 Cs

SEES

Ms
SETS SETS SETS

Sn ; S1 ; Ss ;
Tn {an, bn} T1 {a1, b1} Ts {as, bs}

ABSTRACT CONSTANTS ABSTRACT CONSTANTS ABSTRACT CONSTANTS

acn ac1 acs

CONCRETE CONSTANTS CONCRETE CONSTANTS CONCRETE CONSTANTS

ccn cc1 ccs

PROPERTIES PROPERTIES PROPERTIES

Pn P1 Ps

INCLUDES INCLUDES

Mi1(Ni1 , ni1), Minc1

Mi2(Ni2 , ni2)
ABSTRACT VARIABLES ABSTRACT VARIABLES ABSTRACT VARIABLES

avn av1 avs

CONCRETE VARIABLES CONCRETE VARIABLES CONCRETE VARIABLES

cvn cv1 cvs

INVARIANT INVARIANT INVARIANT

In I1 Is

INITIALISATION INITIALISATION INITIALISATION

Un U1 Us

ASSERTIONS ASSERTIONS ASSERTIONS

Jn J1 Js

OPERATIONS OPERATIONS OPERATIONS

u1 ← op1(w1) b= u1 ← op1(w1) b= us ← ops(ws) b=
pre pre pre

Qn Q1 Qs

then then then
Vn V1 Vs

end end end
END END END

Components M1, R2, . . ., Rn-1 respectively include the machines Minc1, Minc2, . . ., Mincn−1. No
description of these machines will be provided here because they take up too much space. However,
the M1incn and M2incn machines included by refinement Rn is describe (especially due to the Li1

part of the invariant in M1incn).
The abstract machine M1 above is different from machine M1 in Appendix A as it does not contain
a USES clause.

REFINEMENT PROOF OBLIGATIONS 47

MACHINE MACHINE
Mi1(Xi1 ,xi1) Mi2(Xi2 ,xi2)

CONSTRAINTS CONSTRAINTS
Ci1 Ci2

SETS SETS
Si1 ; Si2 ;
Ti1 {ai1 , bi1} Ti2 {ai2 , bi2}

ABSTRACT CONSTANTS ABSTRACT CONSTANTS
aci1 aci2

CONCRETE CONSTANTS CONCRETE CONSTANTS
cci1 cci2

PROPERTIES PROPERTIES
Pi1 Pi2

USES
Mi2

ABSTRACT VARIABLES ABSTRACT VARIABLES
avi1 avi2

CONCRETE VARIABLES CONCRETE VARIABLES
cvi1 cvi2

INVARIANT INVARIANT
Ii1 ∧ Li1 (vi2) Ii2

INITIALISATION INITIALISATION
Ui1 Ui2

ASSERTIONS ASSERTIONS
Ji1 Ji2

OPERATIONS OPERATIONS
ui1 ← opi1 (wi1) b= ui2 ← opi2 (wi2) b=

pre pre
Qi1 Qi2

then then
Vi1 Vi2

end end
END END

The following notations are used:

“Explicit and implicit properties of the machine”
B1

def Binc1 ∧ P1 ∧ S1 ∈ P1(INT) ∧
T1 ∈ P1(INT) ∧ T1{a1, b1} ∧ a1 6= b1

...
“Explicit and implicit properties of the previous refinement”
Bn−1

def Bincn−1 ∧ Pn−1 ∧ Sn−1 ∈ P1(INT) ∧
Tn−1 ∈ P1(INT) ∧ Tn−1{an−1, bn−1} ∧ an−1 6= bn−1

“Explicit and implicit properties of the considered refinement”
Bn

def Pn ∧ Sn ∈ P1(INT) ∧ Tn ∈ P1(INT) ∧ Tn{an, bn} ∧ an 6= bn

In addition, in the proof obligation formulas presented below, the invariants I1, . . ., In−1 are formed
from the conjunction of the invariant of the corresponding component (M1 . . . Rn-1) and possible
included instanced invariants.

48 Proof Obligations - Reference Manual

B.1 Inclusion in a Refinement

Proof obligation formula:

The proof obligation below must be proven for each included machine (Mi1 and Mi2), it is presented
here for Mi1:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn−1 ∧ “Properties of constants from previous refinements”

Bn ∧ “Properties of refinement constants”

Bs “Properties of constants in components seen”

⇒

[Xi1 , xi1 : Ni1 , ni1]Ci1 “Instanced constraint”

B.2 Assertion in a Refinement

Assertion Jn is a succession of predicates that are noted Jn1 , Jn2 , · · ·, Jnk
.

Proof obligation formula:

The proof obligation below must be proven for each assertion of Jn :

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn−1 ∧ “Properties of constants from previous refinements”

Bn ∧ “Properties of refinement constants”

Bs ∧ “Properties of constants of components seen”

Bi1 ∧ Bi2 ∧ “Properties of constants in included components”

[Xi1 , xi1 : Ni1 , ni1](Ii1 ∧ Li1 ∧ Ji1) ∧ “Invariants and assertions”
[Xi2 , xi2 : Ni2 , ni2](Ii2 ∧ Ji2) ∧ “of included components”

(I1 ∧ J1) ∧ . . . ∧ (In−1 ∧ Jn−1) ∧ “Invariants and assertions of previous refinements”

In ∧ “Refinement invariant”

Jn1 ∧ · · · ∧ Jnj−1 “Previous assertions”

⇒

Jnj
“Assertions to prove”

REFINEMENT PROOF OBLIGATIONS 49

B.3 Initialisation in a Refinement

Mathematical formula of the proof obligation:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn−1 ∧ “Properties of constants of previous refinements”

Bn ∧ “Properties of refinement constants”

Bs ∧ “Properties of constants of components seen”

Bi1 ∧ Bi2 ∧ “Properties of constants of components included”

[Xi1 , xi1 : Ni1 , ni1](Ii1 ∧ Li1 ∧ Ji1) ∧ “Invariants and assertions”
[Xi2 , xi2 : Ni2 , ni2](Ii2 ∧ Ji2) ∧ “of included components”

Is ∧ Js “Invariants and assertions of components seen”

⇒

“Initialisation of included components, then of the refinement applied to the negation of”
“the application of the refined initialisation applied to the negation of the invariant”
[[Xi1 , xi1 : Ni1 , ni1]Ui1 ; [Xi2 , xi2 : Ni2 , ni2]Ui2 ;Un]¬ [Un−1]¬ (In ∧ Li1)

B.4 Operations in a Refinement

Mathematical formula of the proof obligation:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn−1 ∧ “Properties of constants of previous refinements”

Bn ∧ “Properties of refinement constants”

Bs ∧ “Properties of constants of components seen”

Bi1 ∧ Bi2 ∧ “Properties of constants of components included”

[Xi1 , xi1 : Ni1 , ni1](Ii1 ∧ Li1 ∧ Ji1) ∧ “Invariants and assertions”
[Xi2 , xi2 : Ni2 , ni2](Ii2 ∧ Ji2) ∧ “of included components”

Is ∧ Js ∧ “Invariants and assertions of components seen”

(I1 ∧ J1) ∧ . . . ∧ (In ∧ Jn) ∧ “Invariants and assertions of the vertical development”

Q1 “Precondition of the abstract operation”

⇒

Qn ∧ “Precondition of the refinement operation”

“Refinement operation applied to the negation of the specified operation”
“applied to the negation of the invariant”
[[u1 : u′1]Vn]¬ [Vn−1]¬ (In ∧ u1u

′
1)

50 Proof Obligations - Reference Manual

Remark on this proof obligation: in order to check that the result of the refinement operation
is the same as the result of the previous refinement operation, a predicate u1u

′
1 is added to the

invariant In. u1 will take as its value the result of operation Vn−1; using the substitution [u1 : u′1]
applied to Vn, u′1 will take as its value the result of operation Vn.

Appendix C

Implementation Proof Obligations

The following machines introduce the naming convention that will be be used to describe the proof
obligations linked to the Mn implementation. M1 is the notation for the abstract machine, and
R2, . . ., Rn-1 the refinements prior to Mn. These components are an inclusion of machines Minc1,
Minc2, . . ., Mincn-1 respectively.

51

52 Proof Obligations - Reference Manual

IMPLEMENTATION MACHINE MACHINE MACHINE
Mn(X1,x1) M1(X1,x1) Ms(Xs,xs) Mi(Xi,xi)

REFINES
Rn−1

CONSTRAINTS CONSTRAINTS CONSTRAINTS
C1 Cs Ci

SEES
Ms

SETS SETS SETS SETS
Sn ; S1 ; Ss ; Si ;
Tn {an, bn} T1 {a1, b1} Ts {as, bs} Ti {ai, bi}

ABSTRACT ABSTRACT ABSTRACT
CONSTANTS CONSTANTS CONSTANTS
ac1 acs aci

CONCRETE CONCRETE CONCRETE CONCRETE
CONSTANTS CONSTANTS CONSTANTS CONSTANTS
ccn cc1 ccs cci

PROPERTIES PROPERTIES PROPERTIES PROPERTIES
Pn P1 Ps Pi

VALUES
S1 E1 ;

.

.

.
Sn En ;
cc1 d1 ;

.

.

.
ccn dn

IMPORTS INCLUDES
Mi(Ni, ni) Minc1

ABSTRACT ABSTRACT ABSTRACT
VARIABLES VARIABLES VARIABLES
av1 avs avi

CONCRETE CONCRETE CONCRETE CONCRETE
VARIABLES VARIABLES VARIABLES VARIABLES
cvn cv1 cvs cvi

INVARIANT INVARIANT INVARIANT INVARIANT
In I1 Is Ii

INITIALISATION INITIALISATION INITIALISATION INITIALISATION
Un U1 Us Ui

ASSERTIONS ASSERTIONS ASSERTIONS ASSERTIONS
Jn J1 Js Ji

LOCAL OPERATIONS
ul1 ← opl1(wl1) b=

pre
Ql1

then
Vl1

end

OPERATIONS OPERATIONS OPERATIONS OPERATIONS
ul1 ← opl1(wl1) b=

Vl2 ;
u1 ← op1(w1) b= u1 ← op1(w1) b= us ← ops(ws) b= ui ← opi(wi) b=

Vn pre pre pre
Q1 Qs Qi

then then then
V1 Vs Vi

end end end

END END END END

In this section, we will use the following notation:

“Explicit and implicit properties of the machine”
B1 def Binc1 ∧ P1 ∧ S1 ∈ P1(INT) ∧

T1 ∈ P1(INT) ∧ T1{a1, b1} ∧ a1 6= b1

...
“Explicit and implicit properties of the refined component”
Bn−1

def Bincn−1 ∧ Pn−1 ∧ Sn−1 ∈ P1(INT) ∧
Tn−1 ∈ P1(INT) ∧ Tn−1{an−1, bn−1} ∧ an−1 6= bn−1

“Explicit and implicit properties of the implementation”
Bn

def Pn ∧ Sn ∈ P1(INT) ∧ Tn ∈ P1(INT) ∧ Tn{an, bn} ∧ an 6= bn

IMPLEMENTATION PROOF OBLIGATIONS 53

C.1 Importing into an Implementation

Proof obligation formula:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn ∧ “Vertical development properties”

Bs “Properties of constants and components seen”

⇒

[Xi, xi : Ni, ni]Ci “Instanced constraint of the imported machine”

C.2 Valuation in an Implementation

Proof obligation formula:

Bs ∧ “Properties of constants of components seen”

Bi “Properties of constants of components imported”

⇒

“Valuing constants applied to properties”
∃(ac1, . . . , acn−1) . [S1 := E1; cc1 := d1; . . . ; Sn := En; ccn := dn](B1 ∧ · · · ∧ Bn)

54 Proof Obligations - Reference Manual

C.3 Assertion in an Implementation

The assertion Jn is a succession of predicates that will be noted Jn1 , Jn2 , · · ·, Jnk
.

Proof obligation formula:

The proof obligation below must be proven for each assertion of Jn:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn ∧ “Properties of the vertical development”

Bs ∧ “Properties of constants of components seen”

Bi ∧ “Properties of constants of imported components”

[Xi, xi : Ni, ni](Ii ∧ Ji) ∧ “Invariants and assertions of imported components”

(I1 ∧ J1) ∧ . . . ∧ (In−1 ∧ Jn−1) ∧ “Invariants and assertions of previous refinements”

In ∧ “Invariant of the implementation”

Jn1 ∧ · · · ∧ Jnj−1 “Previous assertions”

⇒

Jnj
“Assertion to prove”

C.4 Initialisation in an Implementation

Mathematical formula of the proof obligation:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn ∧ “Properties of the vertical development”

Bs ∧ “Properties of constants of components seen”

Bi ∧ “Properties of constants of components imported”

[Xi, xi : Ni, ni](Ii ∧ Ji) ∧ “Invariants and assertions for imported components”

Is ∧ Js “Invariants and assertions for components seen”

⇒

“Initialisations of imported components then initialisation of the implementation”
“applied to the negation of the specified initialisation applied to the invariant”
[[Xi, xi : Ni, ni]Ui ; [Xi2 , xi2 : Ni2 , ni2]Ui2 ;Un]¬ [Un−1]¬ In

IMPLEMENTATION PROOF OBLIGATIONS 55

C.5 Operations on an Implementation

Mathematical formula of the proof obligation:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn ∧ “Vertical development properties”

Bs ∧ “Properties of constants of components seen”

Bi ∧ “Properties of constants of imported components”

Is ∧ Js ∧ “Invariants and assertions of components seen”

[Xi, xi : Ni, ni](Ii ∧ Ji) ∧ “Invariants and assertions of imported components”

(I1 ∧ J1) ∧ . . . ∧ (In ∧ Jn) ∧ “Invariants and assertions from the vertical development”

Q1 “Abstract operation precondition”

⇒

“Implementation operation applied to the negation of the specified operation”
“applied to the negation of the link invariant”
[[u1 : u′1]Vn]¬ [Vn−1]¬ (In ∧ u1u

′
1)

C.6 Specification of Local Operations in an Implementation

Mathematical formula of the proof obligation:

Let Dl1 be the typing predicates of the outputs parameters u1.

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn ∧ “Vertical development properties”

Bs ∧ “Properties of constants of components seen”

Bi ∧ “Properties of constants of imported components”

Is ∧ Js ∧ “Invariants and assertions of components seen”

[Xi, xi : Ni, ni](Ii ∧ Ji) ∧ “Invariants and assertions of imported components”

BTyping(vcn) ∧ “B typing of the concrete variables of the implementation”

Ql1 “Precondition of the local operation specification”

⇒

“Local operation applied to the invariants of imported components and to the postcondition”
[Vl1][Xi, xi := Ni, ni](Ii ∧ Dl1)

56 Proof Obligations - Reference Manual

C.7 Implementation of Local Operation in an Implementa-
tion

Mathematical formula of the proof obligation:

A1 ∧ “Machine parameter constraints”

B1 ∧ . . . ∧ Bn ∧ “Vertical development properties”

Bs ∧ “Properties of constants of components seen”

Bi ∧ “Properties of constants of imported components”

Is ∧ Js ∧ “Invariants and assertions of components seen”

[Xi, xi : Ni, ni](Ii ∧ Ji) ∧ “Invariants and assertions of imported components”

BTyping(vcn) ∧ “B typing of the concrete variables of the implementation”

cvn = cv′n ∧
“Implicit invariant of equality for the concrete variables of
the implementation”

avi = av′i ∧
“Implicit invariant of equality for the abstract variables of
the imported components”

cvi = cv′i ∧
“Implicit invariant of equality for the concrete variables of
the imported components”

Ql1 “Precondition of the local operation specification”

⇒

“Implementation of the local operation applied to the negation of the specification of the
local operation applied to the negation of the invariant of equality for the variables of the
implementation and of imported components and for the output parameters of the local
operation.”
[[ul1 := u′l1]Vl2]¬ [Vl1]¬ (cvn = cv′n ∧ avi = av′i ∧ cvi = cv′i ∧ ul1 = u′l1)

	Glossary
	Introduction
	General Format of Proof Obligations
	Introductory Example
	Effect of the Proof Obligations
	Overview of Proof Obligations

	Correctness of the Abstract Machine
	Correctness of Inclusions
	Correctness of Assertions
	Correctness of the Initialisation
	Correctness of Operations

	Correctness of the Refinement
	Correctness of Inclusions
	Correctness of Assertions
	Correctness of the Initialisation
	Correctness of Operations

	Correctness of the Implementation
	Correctness of Imports
	Correctness of Valuations
	Correctness of Assertions
	Correctness of the Initialisation
	Correctness of Operations
	Correctness of Specifications of Local Operations
	Correctness of Implementations of Local Operations

	Abstract Machine Proof Obligations
	Inclusion in an Abstract Machine
	Assertion in an Abstract Machine
	Initialisation in an Abstract Machine
	Operations in an Abstract Machine

	Refinement Proof Obligations
	Inclusion in a Refinement
	Assertion in a Refinement
	Initialisation in a Refinement
	Operations in a Refinement

	Implementation Proof Obligations
	Importing into an Implementation
	Valuation in an Implementation
	Assertion in an Implementation
	Initialisation in an Implementation
	Operations on an Implementation
	Specification of Local Operations in an Implementation
	Implementation of Local Operation in an Implementation

