
Atelier B

Type Checker

Error Message Manual

version 3.6

ATELIER B
Type Checker Error Message Manual
version 3.6

Document made by CLEARSY.

This document is the property of CLEARSY and shall not be copied, duplicated or
distributed, partially or totally, without prior written consent.

All products names are trademarks of their respective authors.

CLEARSY
ATELIER B maintenance

Parc de la Duranne
320 avenue Archimède

Les Pléiades III - Bât.A
13857 Aix-en-Provence Cedex 3

France

Tél 33 (0)4 42 37 12 99
Fax 33 (0)4 42 37 12 71

email : maintenance.atelierb@clearsy.com

Contents

1 Introduction 3

2 Definitions 5

3 Warning messages 7

4 Error messages 11

5 Internal error messages 85

1

2 Type Checker - Error Message Manual

Chapter 1

Introduction

In this manual, different error and warning messages originating from the Type Checker
are presented. The goal is to define the origin of errors for each message so as to help the
user : once the source of error has been correctly located, it is much easier to correct one’s
specification. For more complex and detailled information, please refer to the B Language
Reference Manual.

The messages from the Type Checker are all flanked by :

Type Checking <machine/refinement/implementation><comp name>
...
End of Type checking

For each effective control, an information message is posted . For example :

Checking operation Read

informs the user that the Type Checker is verifying the Read operation. The error or
warning messages which will follow, will refer to the Read operation. However, they will
specify the extract from the source code where the error has been localised. In fact, the
expressions A <: B et A <<: B are normalised in A : POW(B). If there are any associated
messages they will quote the normalised expression.

This manual is made up of four chapters. The first one defines the terms used in the
message explanations. The following three chapters present, in order, the warning, error,
and internal error messages.

The messages are classified according to alphabetical order. Symbols, apart from figures,
are not included in the classification. So, the message :

<exp> and <ident> have incompatible type in a CASE substitution

is classified under the A letter. It therefore comes before the message :

Bound <ident> of <exp> should be an integer

3

4 Type Checker - Error Message Manual

Each message is presented in a table, as follows:

Example Comment
Component name <ident> should be an identifier wording of the message
Name of a component, which must be a simple name, i.e., a
correct B identifier.

description of the error
made

/*The name of the machine below is incorrect because
it contains a dot.*/
MACHINE
M1.N2

END

example of a specifica-
tion generating the mes-
sage

Chapter 2

Definitions

This chapter defines certain terms used henceforth in the manual.

constant denotes indifferently an abstract or concrete constant .

component denotes indifferently a machine, a refinement or an implementation.

B identifier chain of characters verifying the following rules:

• at least two characters

• beginning with a letter

• composed solely of letters (A-Z, a-z), digits (0-9) and underscore (_)

keyword identifier with a particular meaning. The list of keywords in the B Language is
presented in the B Language Reference Manual. It is necessary to complete it with
the following list which is the list of identifiers reserved for the tools : ARI, CATL,
DED, DEF, END, FLAT, FORWARD, FORWARDTHEORIES, GEN, HYP, IS,
LMAP, MAP, MODR, NEWV, NORMAL, NORMALTHEORIES, PROOFLEVEL,
PROOFMETHOD, RES, REV, RULE, SET, SHELL, SPESPE, SUB, THEORY,
THEORIES, WRITE, bUpident, band, bappend, bcall, bcall1, bcall2, bcatl, bclean,
bclose, bcompile, bconnect, bcrel, bcrelr, bcrer, bctrule, bdef1, bdef2, bdump,
berv, bfalse, bfwd, bget, bgethyp, bgetresult, bgoal, bguard, bhalt, bident, bin-
hyp, blemma, blen, blenf, blent, blident, bload, blvar, bmark, bmatch, bmodr,
bnewv, bnlmap, bnmap, bnot, bnum, bpattern, bpop, bprintf, bproved, breade,
breadf, brecompact, bresetcomp, bresult, brev, brule, bsearch, bsetmode, bshell,
bslmap, bsmap, bsparemem, bsrv, bstatistics, bstring, bsubfrm, btest, bunproved,
bvrb, bwritef, bwritem, trace.

typing predicate predicate of the form ”Expression op Identifier” where op is either
belonging (∈), or inclusion (⊂ or ⊆), or equality (=). These predicates are described
in details in the B Language Reference Manual.

variable denotes an abstract or concrete variable.

5

6 Type Checker - Error Message Manual

Chapter 3

Warning messages

Warning messages from the type checker are preceeded by :

Warning :

They permit the user to anticipate a future error message from the B0Checker. They can
also indicate potential problems concerning code readability.

Concrete constant <ident cst> has not been valued

All of the concrete constants defined during refinement must be valued in the implemen-
tation’s VALUES clause. This warning anticipates an error message from B0Checker.

IMPLEMENTATION M1_1
REFINES M1
CONCRETE_CONSTANTS
cc

PROPERTIES
cc : INTEGER --> BOOL

END /* cc is not valued */

Concrete constant <ident cst> is not an implementable array

The concrete constant <ident cst> is not implementable in B0: its domain must be an
interval or a listed set.

MACHINE
M1

CONSTANTS
Sequence, Relation

SETS
EE

PROPERTIES
Sequence : seq(EE) &
Relation : INT <-> INT
/* Sequence and Relation are not implementable */

END

7

8 Type Checker - Error Message Manual

Concrete constant <ident cst> may not be implementable

The type checker is not yet able to determine whether the constant <ident cst> is
implementable. This warning may appear after an error in the type calculation. In this
case other messages will detail the problem.

MACHINE
M1

CONSTANTS
c1

PROPERTIES
c1 = FctUnknown(1)

END

Constant <ident cst> is not an implementable record : it uses a non im-
plementable array

Concrete constant <ident cst> is not implementable in B0: one of its fields is a non
implementable array (its domain should be an interval or an enumerated set).

MACHINE
M1

CONSTANTS
Record1, Record2

SETS
EE

PROPERTIES
Record1 : struct(seq1 : seq(EE), bb ; BOOL) &
Record2 : struct(rel1 : INT <-> INT, xx : INT)
/* Record1 and Record2 are not implementable. */

END

Deferred set <ident set> has not been valued

All of the abstract sets defined during refinement must be valued in the implementa-
tion’s VALUES clause. This warning anticipates an error message from the B0Checker.

IMPLEMENTATION M1_1
REFINES M1
SETS SS
END /* SS is not valued */

WARNING MESSAGES 9

Identifier <ident> is already used

The identifier <ident> is used more than once in the analyzed component. These two
definitions do not risk a conflict and the specification is correct. This warning simply
highlights a potential problem in the understanding of sources when read.

REFINEMENT M1_1
REFINES M1
OPERATIONS
op =
VAR vv IN
vv : (vv : NAT & !vv.(vv : BOOL => 0 = 0))
/* the second vv does not conflict with the first one but

may interfere with the understanding of the operation */
END

END

Local variable <ident> may be read before being initialised

This message is generated for a machine or a refinement. Local variable <ident> is
a variable defined in a VAR substitution or in the list of output parameters for an
operation. It was used while not completely initialised by a branch substitution.

MACHINE M1
OPERATIONS
ss, tt <-- op(ii) = PRE ii : NAT THEN
IF ii > 1 THEN
ss := 2

END;
tt := ss
/* ss was not initialised in all branches of the IF condition */

END
END

Local variable <ident> may not be initialised

Local variable <ident>, defined in a VAR substitution, is not properly initialised or is
initialised in only some paths of a branch substitution.

REFINEMENT
M1_1

OPERATIONS
op = VAR vv IN skip END

END

10 Type Checker - Error Message Manual

Local variables <list ident> may not be initialised

Local variables <list ident>, defined in a VAR substitution, are not properly initialised
or are initialised in only some paths of a branch substitution.

REFINEMENT
M1_1

OPERATIONS
op(ii) = PRE ii : NAT THEN
VAR vv, ww IN
IF ii = 1 THEN

vv := 2
END

END

Output parameter <ident> may not be initialised

This message is generated for a machine or a refinement. The output parameter
<ident> from the operation being type checked was not initialised in all of the branches
of the branch substitutions used in the body of this operation.

MACHINE M1
OPERATIONS
ss <-- op(ii) = PRE ii : NAT THEN
IF ii > 1 THEN
ss := 2

END
END

END
/* ss was not initialised in all of the branches of the IF condition */

Output parameters <list ident> may not be initialised

This message is generated for a machine or a refinement. The <list ident> output
parameters from the operation being type checked were not initialised in all branches
of the branch substitutions in the body of this operation.

MACHINE M1
OPERATIONS
ss, tt <-- op(ii) = PRE ii : NAT THEN
IF ii > 1 THEN
ss := 2

ELSE
tt := 3

END
END

END
/* ss and tt were not typed in all branches of the IF condition */

Chapter 4

Error messages

Error messages from the type checker are preceeded by :

Error :

As far as possible, the type checker does not stop after an error. If, however, it finds it
impossible to continue, the following final message indicates that the verification has been
interrupted :

TypeCheck aborted

$0 is not allowed: <ident>$0

Expression $0 is only allowed in the ”becomes such as” and ”WHILE” substitutions.
This message is thrown in all other cases.

MACHINE
M1

CONCRETE_VARIABLES
vv

INVARIANT
vv : NAT

INITIALISATION
vv := 1

OPERATIONS
op = vv := vv$0

END

11

12 Type Checker - Error Message Manual

Abstract and concrete headers of local operation <ident op> differ

Headers of implementation of local operations must be strictly identical to the headers
of their abstraction: the number of input and output parameters must be retained, the
parameter names must be the same.

IMPLEMENTATION
M1_1

REFINES
M1

CONCRETE_VARIABLES
v1

INVARIANT
v1:NAT

INITIALISATION
v1:=0

LOCAL_OPERATIONS
oper1 =
skip;

oper2(xx) = PRE
xx:NAT

THEN
v1:=xx

END;
res <-- oper3 =
res := v1;

res <-- oper4(xx) = PRE
xx:NAT

THEN
res:=xx+v1

END
OPERATIONS
oper1(xx) = skip

/*xx is too many*/;
out <-- oper2 = BEGIN

/*out is too many,
xx is missing */

out:=0
END;
out <-- oper3 = BEGIN

/*out instead of res*/
out := v1

oper4 = skip
/* res and xx are missing*/

END

ERROR MESSAGES 13

Abstract and concrete headers of operation <ident op> differ

In a refinement or an implementation, the headers of refined operations must be strictly
identical to the abstract machine headers: the number of input and output parameters
must be retained, the parameter names must be the same. In the same way, when
refining an operation with a promoted operation, the headers must be identical.

MACHINE
M1

VARIABLES
v1

INVARIANT
v1:NAT

INITIALISATION
v1:=0

OPERATIONS
oper1 =
skip;

oper2(xx) = PRE
xx:NAT

THEN
v1:=xx

END;
res <-- oper3 =
res := v1;

res <-- oper4(xx) = PRE
xx:NAT

THEN
res:=xx+v1

END;
out <-- opincluse(in) = PRE
in:NAT

THEN
out:=in+1

END;
END

IMPLEMENTATION
M1_1

REFINES
M1

IMPORTS
M2

PROMOTES
opincluse

OPERATIONS
oper1(xx) = skip

/*xx is too much*/;
out <-- oper2 = BEGIN

/*out is too much,
lacks xx*/

out:=0
END;
out <-- oper3 = skip;

/*out in place of res*/
oper4 = skip

/*lacks res and xx*/
END

MACHINE
M2

OPERATIONS
res <-- opinclue(xx) =
/* res and xx in place of out and in */
PRE xx:NAT THEN res:=xx+1 END

END

14 Type Checker - Error Message Manual

Abstract constant <ident cst> cannot be used in <ident mach> instancia-
tion

The abstract constants of a machine or a refinement M cannot be used in the instan-
ciation of the machines referenced in the INCLUDES and EXTENDS clauses in M.

MACHINE M1
ABSTRACT_CONSTANTS
cc

PROPERTIES
cc : POW(NAT) * POW(NAT)

INCLUDES
M2(cc)

END

Abstract constant <ident> has not been typed

All abstract constants must be typed in the PROPERTIES clause using a typing pred-
icate (refer to the definition in Chapter 1).

/*In the example below, constants valmin and valmed have not been
typed.*/
MACHINE MACH_CONST
ABSTRACT_CONSTANTS
valmax,
valmin,
valmed

PROPERTIES
valmax = 100 &
valmin < valmax /* This does not type valmin */

END /* valmed not typed */

ERROR MESSAGES 15

Abstract constant <ident hcst> has not the same type in <ident comp1>
and in <ident comp2>

<ident comp1> designates the component refined by the analyzed component.
<ident comp2> designates a machine which is directly requested by the analyzed com-
ponent.
The abstract constant <ident hcst> of <ident comp1> can not be implemented by an
abstract or concrete homonym constants which have a different type in <ident comp2>.

MACHINE
other

ABSTRACT_CONSTANTS
cc

PROPERTIES
cc : BOOL

END

MACHINE
M1

ABSTRACT_CONSTANTS
cc

PROPERTIES
cc : NAT
/* Replace cc : NAT

with cc : BOOL */
END

IMPLEMENTATION
M1_i

REFINES
M1

IMPORTS
other

END

Abstraction and refinement have the same name

The names of components in a vertical development must all be distinct. In general,
the position n refinement of machine M1 is named M1 n.

REFINEMENT
MACH /* illegal */

REFINES
MACH

END

REFINEMENT
MACH_1 /* write recommended */

REFINES
MACH

END

Abstract set name <ident> should be an identifier, or invalid list separator

A set name must be a B language identifier (refer to the definition in Chapter 1). Each
set definition must be separated by a semi colon.

MACHINE
M1

SETS
2; "string"; combined name

END

16 Type Checker - Error Message Manual

<exp> and <ident> have incompatible type in a CASE substitution

Discriminant <exp> of a CASE substitution and branch selector <ident> should have
the same type.

MACHINE
M1

SETS
EE = {c1, c2}

VARIABLES
vv

INVARIANT
vv : NAT

INITIALISATION
vv :: NAT

OPERATIONS
op =
CASE vv OF
EITHER c1 THEN skip
OR TRUE THEN skip
ELSE skip
END
END
/* c1 and TRUE do not have the same type as vv */

END

<ident op> and another operation of <ident mach> are called simultane-
ously

Two included operations cannot be called in parallel.

MACHINE M1
VARIABLES
v1,v2

INVARIANT
v1:NAT & v2:NAT & v1<=v2

INITIALISATION
v1:=0 || v2:=0

OPERATIONS
increment = PRE
v1<v2

THEN
v1:=v1+1

END
;
decrement = PRE
v1<v2

THEN
v2:=v2-1

END
END

MACHINE M0
INCLUDES
M1

OPERATIONS
op_errone = PRE
v1<v2

THEN
increment || decrement
/* the invariant is lost */

END
END

ERROR MESSAGES 17

A record element whithout label can not be used in <Expression>

Two record elements whithout label can not be compared. This is because a record
element without label has a generic type.

MACHINE
M1

ABSTRACT_VARIABLES
xx,yy

INVARIANT
xx : NAT &
yy : BOOL &
rec(xx,yy) = rec(2,TRUE)
/* The expression rec(xx,yy) = rec(2,TRUE) is not correct */
/* xx = 2 & yy = TRUE is correct */

INITIALISATION
xx := 2 ||
yy := TRUE

END

Bound <ident> of <exp> should be an integer

The two boundaries of an interval should be integers.

MACHINE
M1

CONSTANTS
cc, dd

PROPERTIES
cc = TRUE..7 & /* TRUE is not an integer */
dd = 2..Binconnue /* Binconnue is not an integer */

END

<ident> can not be typed by {}
This message is sent when the identifier <ident> is typed by the empty set.

MACHINE
test

ABSTRACT_VARIABLES
vv

INVARIANT
vv = {} /* vv has not been typed. For example, you must write

vv <: NAT &
vv = {}

*/
INITIALISATION

vv := {}
END

18 Type Checker - Error Message Manual

Component name <ident> is a keyword

The <ident> identifier is a reserved language component (refer to Chapter 1). It is
illegal to use it to rename a component.

MACHINE
MAXINT

END

Component name <ident> should be an identifier

A component name must be a simple name, i.e. a correct B language identifier (refer
to the definition in Chapter 1).

/*The machine name below is incorrect as it contains a dot.*/
MACHINE
M1.N2

END

Concrete variable <ident> is implicitly implemented with a variable of
<ident> which has not the same type

In an implementation, a concrete variable may be implicitly implemented with a vari-
able of the same name taken from an imported machine.
In the case of this message, the variable to implement and the one which is imported
do not have the same type, which is illegal.

MACHINE
M1

CONCRETE_VARIABLES
vv

INVARIANT
vv : NAT

INITIALISATION
vv := 1

END

MACHINE
M0

CONCRETE_VARIABLES
vv

INVARIANT
vv : BOOL

INITIALISATION
vv := TRUE

END

IMPLEMENTATION
M1_1

REFINES
M1

IMPORTS
M0

END

ERROR MESSAGES 19

Constant <ident> has not been typed

All constants must be typed in the PROPERTIES clause using a typing predicate (refer
to the definition in Chapter 1).

/*In the example below, constants valmin and valmed have not been
typed.*/
MACHINE MACH_CONST
CONSTANTS
valmax,
valmin,
valmed

PROPERTIES
valmax = 100 &
valmin < valmax /* This does not type valmin */

END /* valmed not typed */

Constant <ident> is not an implementable array

This message is generated for an implementation. An array is not implementable in B0
if its array is not an interval or an enumerated set.

IMPLEMENTATION M1_1
REFINES M1
VISIBLE_CONSTANTS
cc

PROPERTIES
cc : INTEGER --> BOOL

VALUES
cc = INTEGER * {TRUE}
/* INTEGER is not bounded */

END

Constants should be defined in the PROPERTIES clause

The component analyzed is not the PROPERTIES clause although it contains con-
stants.

MACHINE MACH_CONST
CONSTANTS
valmin, valmax

END /* the PROPERTIES clause is missing */

20 Type Checker - Error Message Manual

<ident> declaration is not visible

The analyzed component refers to an object called <ident> that does not belong to
the set of visible objects. This situation occurs after a data entry error or when the
visibility constraints are violated.

MACHINE M1
OPERATIONS
vv <-- op = vv := UnknownId

/* UnknownId is not a visible identifier */
END

Distinct definitions of enumerated set <ident set>

In implementation, a given listed set may be defined in one of the refined components
(or in the implementation) and in a machine that is seen or imported. However, the two
definitions must be identical: same number of elements, same name for each element,
same order of the elements.

MACHINE
M1

SETS
Enum1 = {bb};
Enum2 = {E2a, E2b}

END

MACHINE
M2

SETS
Enum1 = {aa};
Enum2 = {E2b, E2a}

END

IMPLEMENTATION
M1_1

REFINES
M1

SEES
M2
/* Enum1 and Enum2 do not have the same definition in M1 and M2 */

END

ERROR MESSAGES 21

<ident> does not exist or is not a visible operation

The operation called <ident> does not belong to the set of visible operations. This
situation occurs after an entry error or when visibility constraints are not met.

/*The unknown operation in the following
machine does not belong to the included
machine, therefore it is not possible to
promote it:*/
MACHINE
M1

INCLUDES
M2

PROMOTES
opinconnue

END

MACHINE
M2

END

Element <ident elt> of set <ident set> is already defined

This is an identifier conflict.

MACHINE MACH
SETS
COLOURS = { red, green, blue }

; GREEN = { green } /* green is in conflict */
END

Enumerated set name in definition <enum def> should be an identifier

A set name must be a B language identifier (refer to the definition in Chapter 1).

MACHINE
M1

SETS
2 = {aa};
"string" = {bb};
combined name = {cc}

END

22 Type Checker - Error Message Manual

<ident cst> has not the same type in <ident mach1> (or in an abstraction
<ident mach1>) and in <ident mach2>

The <ident cst> constant is implicitly valued by a constant with the same name belong-
ing to a seen or imported machine. <ident cst> type is defined in the PROPERTIES
clause of the abstraction of the analyzed component and the one which is defined in
the seen or imported machine must therefore be identical.

MACHINE M1
CONSTANTS
cst

PROPERTIES
cst : NAT

END

MACHINE M2
CONSTANTS
cst

PROPERTIES
cst : BOOL

END

IMPLEMENTATION M1_1
REFINES
M1

SEES
M2 /* implicit valuation of cst */

END

Identifier <ident> is a keyword

Identifier <ident> is a language keyword (refer to Chapter 1). It cannot be used to
name another entity.

MACHINE MACH(skip)
END

Identifier <ident> is already defined

This message reminds the user of the presence of an identifier conflict when analyzing
a specific clause.

MACHINE
MACH

SEES
SEE01

CONSTANTS
cst1
/*conflict with SEE01*/

PROPERTIES
cst1 : NAT

END

MACHINE
SEE01
CONSTANTS
cst1

PROPERTIES
cst1 : NAT

END

ERROR MESSAGES 23

Identifier <ident cst> is already valued

A constant or a set of the analyzed component is valued twice, which is illegal.

IMPLEMENTATION
M1_1

REFINES
M1

VALUES
val1 = 2 ;
val1 = 2 /*val1 is valued twice*/

END

Identifier <ident> is defined in <ident mach1> and in <ident mach2>

This message indicates an identifier conflict between two machines covered by a visi-
bility clause. The use of a renaming prefix may resolve this conflict.

MACHINE INC01
VARIABLES
v_conflict /*conflict*/

INVARIANT
v_conflict : NAT

INITIALISATION
v_conflict := 0

END

MACHINE INC02
VARIABLES
v_conflict /*conflict*/

INVARIANT
v_conflict : BOOL

INITIALISATION
v_conflict := FALSE

END

MACHINE GLOBAL
INCLUDES
INC01, INC02
/* a correct write includes:

INCLUDES
i1.INC01, i2.INC02 */

END

Identifier <ident> is defined in <ident mch1> and in an included renamed
machine of <ident mch2>

This message indicates an identifier conflict between two machines covered by a visi-
bility clause. The use of a renaming prefix may resolve this conflict.

24 Type Checker - Error Message Manual

Identifier <ident> is defined in <ident mch1> and in <ident mch2> (or in
an abstraction of <ident mch2>)

This message indicates an identifier conflict between two machines covered by a visi-
bility clause. The use of a renaming prefix may resolve this conflict.

MACHINE MACH
INCLUDES
INC01

END

MACHINE INC01
VARIABLES
v_conflict /*conflict*/

INVARIANT
v_conflict : NAT

INITIALISATION
v_conflict := 0

END

REFINEMENT MACH_1
REFINES MACH
END

REFINEMENT MACH_2
REFINES MACH_1
CONCRETE_CONSTANTS
v_conflict /* conflict */

INVARIANT
v_conflict : BOOL

INITIALISATION
v_conflict := FALSE
/* v_conflict in INC01 is still
visible, hence the conflict*/

END

Identifier <ident> is defined in an included (possibly renamed) machine
of <ident mch1> and in an included (possibly renamed) machine of
<ident mch2>

This message indicates an identifier conflict between two machines covered by a visi-
bility clause. The use of a renaming prefix may resolve this conflict.

Identifier <ident> is defined in an included renamed machine of
<ident mch1> and in <ident mch2>

This message indicates an identifier conflict between two machines covered by a visi-
bility clause. The use of a renaming prefix may resolve this conflict.

Identifier <ident> is defined in <ident mch1> (or in <ident mch1>’s ab-
stractions) and in <ident mch2>

This message indicates an identifier conflict between two machines covered by a visi-
bility clause. The use of a renaming prefix may resolve this conflict.

ERROR MESSAGES 25

<ident> in <expr> can not be typed by a record element without label

This message is produced when one tries to type a data with a record value where some
labels where omitted.

MACHINE Mach
CONSTANTS cc
PROPERTIES
cc = rec(1, TRUE)
/* correct version : cc = rec(l1 : 1, l2 : TRUE) */

END

Incompatible types in <exp>

The syntax of <exp> implies certain conditions for the types. This message indicates
a violation of these conditions.
For example, in expression ff(xx), xx must belong to the starting domain of ff. In the
same way, in substitution vv := {aa, bb, cc}, the three elements aa, bb and cc must
have the same type.

MACHINE
M1

SETS
SS; TT

CONSTANTS
relation, ff

PROPERTIES
relation : SS <-> TT &
ff : INT --> SS

OPERATIONS
vv <-- op1 = vv := relation[{1}];

/* 1 does not belong to SS */
vv <-- op2 = vv := [1, 2, TRUE, 6];

/* TRUE is not the same type as 6 */
vv <-- op3 = vv := {1, TRUE, 2};

/* TRUE is not the same type as 2 */
vv <-- op4 = vv := ff(TRUE)

/* TRUE is not an integer */
END

26 Type Checker - Error Message Manual

<exp1> in <exp2> has not been typed

Expression <exp1> contains one or more identifiers that were not typed prior to use
in <exp2>.

MACHINE
M1

CONSTANTS
ff, xx

PROPERTIES
ff : NAT --> NAT &
ff(xx) = 5

END

<exp1> in <exp> should be a couple of sets

The operator used in <exp> expects as an argument a couple of sets.

MACHINE
M1

SETS
EE

CONSTANTS
cc, dd

PROPERTIES
cc = prj1(EE) & /* EE is not a couple of sets */
dd = prj2(Unknown) /* Unknown is not a couple of sets */

END

<exp1> in <exp> should be a function

In an expression in the form f(x), f must have been defined as a function.

MACHINE
M1

CONSTANTS
c1, c2

PROPERTIES
c1 = TRUE(1) & /* TRUE is not a function */
c2 = Unknown(1) /* Unknown is not a function */

END

ERROR MESSAGES 27

<exp1> in <exp> should be a list of distinct identifiers

<exp1> must be a list of B language identifiers, distinct from each other and separated
by commas. The definition of a B language identifier is provided in Chapter 1.

MACHINE
M1

CONSTANTS
cc

PROPERTIES
!(xx, xx). (cc = xx) &

/*xx appears twice */
cc = PI(xx; yy).(xx : NAT & yy : NAT | 1) &

/*use ’;’ in place of ’,’ */
cc = SIGMA(xx, _1).(xx : NAT | 1) &

/* _1 is not an identifier */
cc = UNION(xx, 1).(xx : NAT | {xx})

/* 1 is not an identifier */
END

<exp1> in <exp> should be an expression

This message is generated for a lambda expression: in the notation %L.(P | E), E must
be an expression.

MACHINE
M1

CONSTANTS
cc, dd, ee

PROPERTIES
cc = %(xx).(xx : NAT | skip) &

/* skip is not an expression */
dd = %(xx).(xx : NAT | UnknownExp) &

/* UnknownExp is not an expression */
ee = %(xx).(xx : NAT | xx = 2)

/* xx = 2 is not an expression,
xx := 2 is correct */

END

28 Type Checker - Error Message Manual

<exp1> in <exp> should be an integer

The operators used in <exp> require that <exp1> should be an integer.

MACHINE
M1

CONSTANTS
Relation

PROPERTIES
Relation : INT <-> INT

OPERATIONS
vv <-- op1 = vv := SIGMA(xx).(xx: 1..100 | bool(xx <= 20));

/* bool(xx <= 20) is a Boolean value*/
vv <-- op2 = vv := iterate(Relation, UnknownInteger)

/* UnknownInteger does not have a type*/
END

<exp1> in <exp> should be an integer set or an enumerated set

The operator used in <exp> requires that <exp1> represents an integer set or an
enumerated set.

MACHINE
M1

SETS
AA

OPERATIONS
vv <-- opMinAbst = vv := min(AA); /*AA is an abstract set */
vv <-- opMinScal = vv := min(3); /*3 is not a set */
vv <-- opMaxInc = vv := max(UnknownEns) /*UnknownEns is not a set*/

END

<exp1> in <exp> should be a relation

The operator used in <exp> requires that <exp1> represents a relation.

MACHINE
M1

SETS
SS

CONSTANTS
cc, tt

PROPERTIES
cc = ran(6) & /* 6 is not a relation */
tt : NAT

OPERATIONS
vv <-- op1 = vv := rel(tt); /* tt is not a relation */
vv <-- op2 = vv := Unknown~; /* Unknown is not a relation */
vv <-- op3 = vv := fnc(SS) /* SS is not a relation */

END

ERROR MESSAGES 29

<exp1> in <exp> should be a relation between a set and itself

The operator used in <exp> expects as an argument a relation between a set
and itself.

MACHINE
M1

SETS
EE, FF

CONSTANTS
Rel, Rel6, Clos

PROPERTIES
Rel : EE <-> FF &
Rel6 = iterate(Rel, 6) /* error as EE /= FF */

END

<exp1> in <exp> should be a sequence of sequences

The operator used in <exp> expects a sequence of sequences as its argument.

MACHINE
M1

CONSTANTS
Sequence

PROPERTIES
Sequence : seq(INT)

OPERATIONS
vv <-- opConc = vv := conc(Sequence);
/* Sequence is not a sequence of sequences */

vv <-- opConc2 = vv := conc(UnknownSeq)
/* UnknownSeq is not a sequence of sequences */

END

30 Type Checker - Error Message Manual

<exp1> in <exp> should be a set

The operators used in <exp> require that <exp1> represents a set.

MACHINE
M1

CONSTANTS
cc, dd, ee

SETS
EE

PROPERTIES
cc : UnknownEns & /* UnknownEns should be a set */
ee : NAT &
dd /: ee /* ee is not a set */

OPERATIONS
vv <-- opInter = vv := INTER(xx).(xx : NAT | ee);

/* ee is not a set */
vv <-- opCard = vv := card(UnknownEns);

/* UnknownEns is not a set */
vv <-- opSeq = vv := seq(1)

/* 1 is not a set */
END

<exp1> in <exp> should be a set of sets of same type

The operators used in <exp> require that <exp1> represent a set of sets of the same
type.

MACHINE M1
CONSTANTS
aa, bb

PROPERTIES
aa = union(UnknownEns) & /* UnknownEns does not have a type */
bb = inter({1, 2}) /* {1, 2} is a set of integers */

END

ERROR MESSAGES 31

Internal name clash between identifier <ident> and a renamed identifier of
the abstraction of <ident mach>

When a component renames a machine with the ”pp” prefix, and when the latter has
an identifier called ”ident”, the proof obligation generator and the prover handle the
”ppident” identifier and not ”pp.ident”. If a ”ppident” identifier is also defined in a
non renamed machine or in the component itself, a conflict occurs.
This conflict is detected so that there are never any incorrect proof obligations, this is
only due to the internal operation of Atelier B.

MACHINE M1
INCLUDES
pp.M2

END

MACHINE M2
VARIABLES
var

INVARIANT
var : NAT

INITIALISATION
var := 0

END

REFINEMENT M1_1
REFINES M1
VARIABLES
ppvar

INVARIANT
ppvar : BOOL /*conflict*/

INITIALISATION
ppvar := TRUE

END

Invalid assignement for a record element in <Expression>

This message is sent when a record element assignement is not correct.

MACHINE
test

CONCRETE_VARIABLES
xx

INVARIANT
xx : INT --> struct(l1 : BOOL, l2 : 1..10)

INITIALISATION
xx :: INT --> struct(l1 : BOOL, l2 : 1..10)

OPERATIONS
op1 = BEGIN xx(1)’l1 := TRUE END

/* The syntaxe xx(1)’l1 is not allowed.
xx(1) := rec(TRUE,1) is correct. */

END

32 Type Checker - Error Message Manual

Invalid call of <ident op>: wrong number of input parameters

When an operation is called up, the number of effective parameters must equal the
number of formal parameters.

MACHINE M1
INCLUDES
M2

OPERATIONS
oper02 = BEGIN
oper01(10,10)

END
END

MACHINE M2
OPERATIONS
oper01(xx) = PRE
xx:NAT

THEN
skip

END
END

Invalid call of <ident op>: wrong number of output parameters

When calling up an operation, the number of effective parameters must equal the
number of formal parameters.

MACHINE M1
INCLUDES
M2

OPERATIONS
vv, ww <-- opM1 =
vv, ww <-- opM2

END

MACHINE M2
OPERATIONS
vv <-- opM2 = vv := 1

END

ERROR MESSAGES 33

Invalid constant <expression> in a branch of CASE

A constant listed set or a constant character set was used in a branch of a CASE
substitution. Only numerical constants or identifiers are allowed.

MACHINE M1
VARIABLES
ww

INVARIANT
ww : NAT

INITIALISATION
ww:=0

OPERATIONS
uu <-- OP = BEGIN
CASE ww OF
EITHER {0,1,2} THEN uu:=0

/* 0,1,2 without brackets is correct*/
OR "3,4,5" THEN uu:=1

/* 3,4,5 without brackets is correct */
OR _1 THEN uu:=2

/* _1 is not an identifier*/
ELSE uu:=3
END

END
END
END

Invalid extended machine <ident mach>, it uses other machines

A machine that performs a USES cannot be referenced in an IMPORTS clause. It
cannot therefore appear in the EXTENDS clause of an implementation, as this would
result in importing it.
Note that this message only appears in an implementation. In an abstract machine or
in a refinement, the extension implies an inclusion, therefore it remains authorized.

MACHINE
M2

USES
M3

ENDD

IMPLEMENTATION
M1_1

EXTENDS
M2

END

34 Type Checker - Error Message Manual

Invalid formula in VALUES clause

A syntax error was detected in the VALUES clause. The different valuations must be
separated by semi colons, each valuation is indicated by a ‘=’ character.

IMPLEMENTATION
M1_1

REFINES
M1

VALUES
c3 = 3 &
c4 = " " &
c5 = " "

/* c3 = 3 ; c4 = " " ; c5 = " " is correct */
END

Invalid identifier or invalid list separator <ident>

A syntax error was detected in a list of identifiers. It may be either an incorrect
B language identifier, or the use of a character other than a comma to separate the
elements in the list. The definition of a B language identifier is given in Chapter 1.

MACHINE
M1

CONSTANTS
c1;c2

PROPERTIES
c1 : NAT &
c2 : NAT

END

Invalid imported machine <ident mach>, it uses other machines

A machine that performs USES cannot be referenced in an IMPORTS clause.

MACHINE M2
USES M3
END

IMPLEMENTATION M1_1
REFINES M1
IMPORTS M2
END

Invalid input format

The specification text contains an incorrectly placed character. This may be a character
string that is not closed.

MACHINE M1
CONSTANTS
message

PROPERTIES /* this string is not closed */
message = "message title.

END

ERROR MESSAGES 35

Invalid inputs in <op header>

The input parameters of an operation must be B language identifiers, separated by
commas and distinct from each other. The definition of a B identifier is given in
Chapter 1.

MACHINE M1
OPERATIONS
op1(_1) = ... /* _1 is not an identifier */

; vv <-- op2(b) = ... /* b is not an identifier */
; op3(vv, vv) = ... /* vv appears twice */
; op4(vv; ww) = ... /* the separator must be a comma */
END

Invalid label <ident label> in <ident elem rec>’<ident label>

This message is sent when <ident label> is not an item of the record element
<ident elem rec>.

MACHINE
M1

CONCRETE_CONSTANTS
cc

PROPERTIES
cc : struct(aa : BOOL, bb : BOOL, ee : NAT) &
cc’dd = 3

/* cc does not contain the label dd.
cc’ee = 3 is correct */

END

Invalid label <ident label> in a record expression

This message is sent when the same label <ident label> appears more than once in a
record expression and when this label is not a B language identifier.

MACHINE
M1

CONCRETE_CONSTANTS
cc

PROPERTIES
cc : struct(aa : BOOL, bb : BOOL, 2cc : NAT, 2cc : NAT)
/* 2cc is not a B language identifier.

2cc appears more than once in the same record expression */
END

36 Type Checker - Error Message Manual

Invalid list of identifiers in enumerated set definition <enum def>

An element in an enumerated set must be a B language identifier (refer to the definition
in Chapter 1). These elements must all be distinct and separated by commas.

MACHINE
M1

SETS
ACTIONS = {open-door, close-door};
E1 = {"string"};
E2 = {1};
E4 = {aa, aa};
E5 = {aa; bb}

END

Invalid number of arguments for <subst>

The ‘becomes equal’ substitution is used with an incorrect number of parameters: the
number of variables is different from the number of values to assign.

MACHINE M1
VARIABLES
var1, var2

INVARIANT
var1 : NAT &
var2 : NAT

INITIALISATION
var1, var2 := 0
/* correct initialisation: var1, var2 := 0,0 */

END

Invalid operation call for <ident> assignment

The operation call cannot be used to assign this type of variables.

Invalid operation call for <ident> assignment in <exp>

The operation call cannot be used for the assignment of this type of variables.

ERROR MESSAGES 37

Invalid output parameter <exp>

The effective parameter returned by a called up operation cannot be in the form f(x).
It is necessary to use an intermediate variable.

MACHINE
M1

INCLUDES
M2

VARIABLES
ff

INVARIANT
ff : 1..5 --> INT

INITIALISATION
ff :: 1..5 --> INT

OPERATIONS
op = ff(1) <-- opincluse

END

Invalid output parameters in <op header>

The output parameters of an operation must be B language identifiers, separated by
commas and distinct from each other. The definition of a B language identifier is given
in Chapter 1.

MACHINE M1
OPERATIONS
a <-- op1 = ...; /* a is not an identifier */
_1 <-- op2(ii) = ...; /* _1 is not an identifier " */
(tt, tt) <-- op3 = ...; /* tt appears twice */
(tt; uu) <-- op4 = ...; /* the separator must be a comma */

END

Invalid predicate <pred>

The predicate <pred> is syntactically incorrect.
This message may be generated when a substitution or an expression is used when a
predicate is expected. For example, do not confuse the assignment sign ‘:=’ used in the
substitutions only, and the equals sign ‘=’ reserved for predicates.

MACHINE MACH
VARIABLES

var1, var2
INVARIANT

var1 : NAT &
var2 : NAT &
var1 := var2 /* var1 = var2 is correct */

INITIALISATION
var1:=1 || var2:=1

END

38 Type Checker - Error Message Manual

Invalid seen machine <ident mach>, it uses other machines

A machine performing USES cannot be referenced in a SEES clause.

MACHINE MAC02
USES
UMAC01

END

MACHINE MACH
SEES
MAC02

END

Invalid sequence in <exp>

The operator used in <exp> expects a sequence as an argument.

MACHINE
M1

CONSTANTS
c1, c2

PROPERTIES
c1 = size(TRUE) & /* TRUE is not a sequence */
c2 = first(UnknownSeq) /* UnknownSeq is not a sequence */

Invalid substitution <subst>

The substitution <subst> is syntactically incorrect. In the case of an operation call-
up, the message may be generated if the operation does not exist or is not visible
(especially the modification operations from a machine that is seen cannot be used in
the ”indicator” component).

MACHINE MACH
OPERATIONS
op1 = BEGIN
opinc(0) /* opinc: unknown operation */

END
; op2 = BEGIN

MAXINT /* MAXINT is not a substitution */
END

; op3 = BEGIN
v1 = v2 /* v1 := v2 is correct */

END
END

ERROR MESSAGES 39

Invalid syntax for substitution CASE <subst>

The CASE substitution of the B component analyzed is syntactically incorrect. This
message is generated when a mandatory part of the CASE substitution is missing.

/*In the following CASE substitution, the second THEN is missing.*/
MACHINE
M1

OPERATIONS
op(xx) = PRE xx : NAT THEN
CASE xx OF
EITHER 0,1,2 THEN skip
OR 3,4,5
END

END
END

END

Invalid syntax for substitution IF <subst>

The IF substitution in the analyzed component is syntactically incorrect. This message
is generated when a mandatory part of the IF is missing.

MACHINE
M1

OPERATIONS
op1(xx) = PRE xx : NAT THEN
IF xx = 3 END /*THEN is missing*/

END;
op2(xx) = PRE xx : NAT THEN
IF xx < 2 THEN skip
ELSIF xx = 10 /*THEN in ELSIF is missing*/
END

END
END

40 Type Checker - Error Message Manual

Invalid syntax for substitution SELECT <subst>

The SELECT <subst> substitution is syntactically incorrect. This message may be
generated when a required part of SELECT is missing.

MACHINE
M1

OPERATIONS
op(vv) = PRE vv : NAT THEN
SELECT vv>10 /* THEN is missing */
WHEN vv=0 THEN
skip

ELSE
skip

END
END

END

Invalid syntax in operation definition <op>

The operation definition <op> could not be analyzed. This may be due to a syntax
problem, or due to a priority level problem. Remember that two operations must be
separated by a semi colon.

/* In the following OPERATIONS
clause, an analysis error is due
to the precedence of ‘||’ in
relation to ‘=’ */
MACHINE M1
OPERATIONS
op1 = skip || skip

END

/* Using BEGIN ... END in this case
will resolve the problem */
MACHINE M1
OPERATIONS
op1 = BEGIN skip || skip END

END

Invalid type for <ident> ; <Expression> contains a record element without
label

<ident> designates a not typed data.
<ident> can not be typed by a record element whitout label.

MACHINE
M1

CONCRETE_CONSTANTS
cc

PROPERTIES
cc=rec(2,3) /* rec(2,3) can not be used for typing cc. */

/* The expression cc = rec(item1:2,item2:3) is correct */
END

ERROR MESSAGES 41

Invalid use of a record element without label

Two record elements without label can not be compared. This is because a record
element without label has a generic type.

MACHINE
M1

ABSTRACT_VARIABLES
xx,yy

INVARIANT
xx : NAT &
yy : BOOL &
rec(xx,yy) = rec(2,TRUE)
/* The expression rec(xx,yy) = rec(2,TRUE) is not correct */
/* xx = 2 & yy = TRUE is correct */

INITIALISATION
xx := 2 ||
yy := TRUE

END

Invalid valuation of <ident const>

The rules that allow valuing sets and constants were violated. The types of the formal
constants defined in the abstraction PROPERTIES clause and the types of the values
assigned in the implementation must be identical.
Note that in addition, a set cannot be valued by another set from the same component.

MACHINE MACH
SETS
S1

; S2
CONSTANTS
c1

PROPERTIES
c1 = 1

END

IMPLEMENTATION MACH_imp
REFINES MACH
VALUES
S1 = NAT /* ok */

; S2 = S1 /* no */
; c1 = TRUE /* no */
END

<ident mach> is not a machine

A USES, SEES, INCLUDES, EXTENDS or IMPORTS clause in the analyzed compo-
nent refers to <ident mach> which is a refinement or an implementation. Only abstract
machines may be covered by a visibility clause.

IMPLEMENTATION IMP_1
REFINES IMP
END

MACHINE MACH
SEES
IMP_1
/*an implementation cannot be
seen*/

END

42 Type Checker - Error Message Manual

<ident> is not an identifier

Identifier <ident> breaks the syntax rules that define B language identifiers (refer to
Chapter 1).

MACHINE
M1

CONSTANTS
5, _1 /* 5 and _1 are not identifiers */

PROPERTIES
5 : NAT &
_1 : INT

END

Left hand side and right hand side of <exp> have incompatible type

When using an equals, not equals, an assignment, etc..., the types of the left hand and
right hand parts must be identical.
When using operator such as , ><, /:, etc..., some of the rules on types must be verified.
For example, when composing two relations:
relation1; relation2
so that relation1 : A <-> B and relation2 : C <-> D, B and C must be identical.
If this is not the case, the error message is generated.

MACHINE MACH
VARIABLES
v1, v2, v3

CONSTANTS
relation1

SETS
EE; FF; GG

PROPERTIES
relation1 : EE <-> FF

INVARIANT
v1:NAT &
v2:BOOL &
v3:STRING &
v2/: NAT & /* incompatibility */
v1/=v2 /* incompatibility */

INITILISATION
v1:=0 || v2:=TRUE || v3:=""

OPERATIONS
op1 = v1:= v3 /* incompatibility */
vv <-- op2 = vv := 1..2 /\ BOOL; /* incompatibility */
vv <-- op5 = vv := relation1 |>> GG; /* incompatibility */
vv <-- op7 = vv := EE - FF /* incompatibility */

END

ERROR MESSAGES 43

Left hand side in valuation <val> should be an identifier

The left hand side of a valuation must be a B language identifier (refer to the definition
in Chapter 1).

IMPLEMENTATION
M1_1

REFINES
M1

VALUES
1 = TRUE;
_1 = 2

END

Left hand side of comparison <exp> has not been typed

The left hand side of <exp> has not be typed. This message may be generated when
the typing predicates are placed after property <exp>. The definition of a typing
predicate is detailed in Chapter 1.

MACHINE
M1(pp)

CONSTRAINTS
pp <= 1 & /* pp has not yet been typed*/
pp : NAT

CONSTANTS
cc

PROPERTIES
cc < 2 & /* cc has not yet been typed*/
cc : NAT

VARIABLES
vv

INVARIANT
vv >= 3 & /* vv has not yet been typed*/
vv : NAT

INITIALISATION
vv := 0

OPERATIONS
op(ii) = PRE ii >4 & ii : NAT THEN skip END

/* ii has not yet been typed */
END
/* To correct this specification, simply reverse the predicates */

44 Type Checker - Error Message Manual

Left hand side of comparison <exp> should be an integer

A comparison can only be made between integers.

MACHINE
M1

CONSTANTS
cc

PROPERTIES
cc : BOOL &
cc >= 1

END

Left hand side of <exp> has not been typed

The left hand side of <exp> has not been typed. This message may be generated when
the typing predicates are placed after the <exp> property. The definition of a typing
predicate is described in Chapter 1.

REFINEMENT
M1

CONSTANTS
pp

PROPERTIES
pp /= 1 & /* pp has not yet been typed*/
pp : NAT

OPERATIONS
uu, vv <-- op = BEGIN
uu := vv; /* vv has not yet been typed*/
vv := 1

END
END

Left hand side of <exp> should be an integer

The operator used in <exp> expects an integer on its left hand side.

MACHINE
M1

OPERATIONS
vv <-- op1 = vv := UnknownVar * 2;
vv <-- op2 = vv := TRUE - 2;
vv <-- op3 = vv := TRUE mod FALSE

END

ERROR MESSAGES 45

Left hand side of <exp> should be a relation

The operator used in <exp> expects a relation on its left hand side.

MACHINE
M1

SETS
EE; FF

VARIABLES
relation, var

INVARIANT
relation : EE <-> FF & var : EE

INITIALISATION
relation :: EE <-> FF || var :: EE

OPERATIONS
v1 <-- op1 = v1 := (var || relation);

/* var is not a relation */
v2 <-- op2 = v2 := (Rinconnue >< relation)

/* Rinconnue is not a relation */
END

Left hand side of <exp> should be a sequence

The operator used in <exp> expects a sequence on its left hand side.

MACHINE
M1

CONSTANTS
sequence

PROPERTIES
sequence : seq(INT)

OPERATIONS
vv <-- op1 = vv := 2 ^ sequence; /*2 is not a sequence*/
vv <-- op2 = vv := UnknownSeq <- 2 /*UnknownSeq is not a sequence*/

END

46 Type Checker - Error Message Manual

Left hand side of <exp> should be a set

The operator used in <exp> expects a set on its left hand side.

MACHINE
M1

SETS
SS; TT

VARIABLES
relation,
relation2

INVARIANT
relation : SS <-> TT &
relation2 : 2 <-> SS /*2 is not a set*/

INITIALISATION
relation :: SS <-> TT ||
relation2 :: UnknownEns <-> SS

/* UnknownEns is not a set*/
OPERATIONS
vv <-- op1 = vv := 3 \/ 1..2;

/*3 is not a set*/
vv <-- op2 = vv := (5 <| relation);

/*5 is not a set*/
vv <-- op4 = vv := TRUE * SS

/*TRUE is not a set*/
END

Local operation <ident op> has not been implemented

In an implementation, every local operation defined in the LOCAL OPERATIONS
clause must be implemented in the OPERATIONS clause.

IMPLEMENTATION
M1_1

REFINES
M1

LOCAL_OPERATIONS
op = skip

END
/*op should be implemented*/

ERROR MESSAGES 47

Local variable <ident> is read before being initialised

This message is only generated in implementation. The <ident> local variable is
a variable defined in a VAR substitution or in the list of output parameters for an
operation. It is used when it has not been initialised by a substitution.

IMPLEMENTATION M1_1
REFINES M1
OPERATIONS
ss, tt <-- op(ii) =
IF ii > 1 THEN
ss := 2

END;
tt := ss
/* ss was not initialised in all of the branches of IF */

END

Machine <ident mach> can not be refined, it uses other machines

A machine that performs a USES action cannot be refined, it is an abstract module.

MACHINE M1
USES
M2

END

REFINEMENT M1_1
REFINES
M1
/*refinement impossible*/

END

Machine <ident mach1> should be included in <ident mach2> : it has been
included in the abstraction of <ident mach2>

Machine <ident mach1> is included in a component that refines <ident mach2>. How-
ever, <ident mach2> does not include <ident mach1>, while some of its abstractions
do. This is illegal.
If a component Mi includes a machine N, then:
- none of its refinements includes or imports an N, or
- one of its refinements Mj includes or imports an N, and in this case ALL of the
components of the refinement string between Mi and Mj must include N.
This constraint is used to avoid certain identifier conflicts.

MACHINE M1
INCLUDES M2
END

REFINEMENT M1_1
REFINES M1
END

REFINEMENT M1_2
REFINES M1_1
INCLUDES M2 /* illegal if M1_1 does not include M2*/
END

48 Type Checker - Error Message Manual

Machine <ident mach1> should be seen by <ident mach2>

The analyzed component M1 includes two machines M2 and M4 so that M2 used
M4. The gluing invariant that links the variables of M2 and M4 is defined in the
INVARIANT clause of M2 but must be proven at M1 level.
In the context that generates this message, M2 sees a machine M3 and the variables
of M3 are involved in the gluing invariant linking M2 and M4. However component
M1 does not see M3, and therefore it does not know anything about its variables. The
proof is bound to fail. It is therefore necessary to add M3 to the SEES clause in M1.

MACHINE M3
VARIABLES
v3

INVARIANT
v3 : NAT

INITIALISATION
v3 := 0

END

MACHINE M4
VARIABLES
v4

INVARIANT
v4 : NAT

INITIALISATION
v4 := 10

END

MACHINE M2
SEES
ss.M3

USES
uu.M4

VARIABLES
v2

INVARIANT
v2 : NAT &
/*gluing invariant M2/M4 : */
v2 < ss.v3 + uu.v4

INITIALISATION
v2 :: NAT

END

MACHINE M1
INCLUDES
M2,
uu.M4

/* is missing:
SEES
ss.M3

*/
END

Machine <ident mach1> should be seen by <ident mach2> (it is seen by
<ident mach3>)

If a machine is seen by a component, it must remain so by all of the components
that come after it in the refinement string. This message is therefore generated if a
component M is refined by a component N so that machine S appears in the SEES
clause of M but not in that of N.

MACHINE M1
SEES M2
END

REFINEMENT M1_1
REFINES M1
/* missing:
SEES M2 */
END

ERROR MESSAGES 49

Machine <ident mach> should have parameters

The analyzed component contains a CONSTRAINTS clause while it does not have pa-
rameters, but this clause only allows defining the properties of component parameters.

MACHINE
M1

CONSTANTS
c1

CONSTRAINTS
c1 : NAT /* predicate to place in a PROPERTIES clause */

END

Machine <ident mach1> uses <ident mach2> which is neither included nor
extended

When a machine that performs a USES action is included, all of the machines used
must also be included. For example, if M1 uses M2 that uses M3, then if M2 is included,
M1 and M3 must also be included.

MACHINE MAC02
USES
UMAC01

END

MACHINE MACH
INCLUDES
MAC02
/* UMAC01 must also be included */

END

Missing symbol => in predicate <pred>

This message concerns expressions in the form !X.A. It is generated when A is not in
the form (P => Q). Predicate P must contain the typing predicates for the variables
of X. The definition of a typing predicate is described in Chapter 1.

MACHINE
M1

CONSTANTS
vv

PROPERTIES
vv : 1..10 &
!xx.(xx : NAT & xx >5 & xx > vv)
/* correct notation:
!xx.(xx : NAT & xx > 5 => xx > vv)
*/

END

50 Type Checker - Error Message Manual

Multiple assignment of <ident var> in parallel substitutions

The same variable cannot be assigned in more than one branch in a simultaneous
substitution.

/*The following machine attempts
to give variable v1, the value 0
and the value 1 in parallel.
It is incorrect.*/
MACHINE
MACH

VARIABLES
v1

INVARIANT
v1:NAT

INITIALISATION
v1:=0 ||
v1:=1

END

/*The following machine proposes
multiple solutions to correctly
express the intuitive idea that
was implemented opposite,
i.e. for v1 to equal 0, or 1.*/
MACHINE
MACH

VARIABLES
v1

INVARIANT
v1:NAT

INITIALISATION
v1 :: {0,1}

/*v1:(v1=0 or v1=1)
CHOICE v1:=0 OR v1:=1 END
are also possible*/

END

Multiple assignment of <ident> when calling local operation <ident op>

Local operation <ident op> modifies variable <ident>. When called, one of its effective
output parameter is also variable <ident>. Thus, the operation call is incorrect.

IMPLEMENTATION
M1_1

REFINES
M1

CONCRETE_VARIABLES
vv

INVARIANT
vv : INT

INITIALISATION
vv := 1

LOCAL_OPERATIONS
ss <-- loc_op = BEGIN ss :: INT || vv :: NAT END

OPERATIONS
ss <-- loc_op = BEGIN ss := 1; vv := 2 END;
op = BEGIN vv <-- loc_op END
/* a correct version would be :

VAR tmp IN tmp <-- loc_op; vv := tmp END */
END

Multiple definition of identifier <ident> (because of the INCLUDES clause
transitivity used for <ident mch1>)

Identifier <ident> is defined both in the analyzed component and in a visible compo-
nent. This conflict may be due to the transitivity of the INCLUDES clause.

ERROR MESSAGES 51

Multiple definition of identifier <ident> in <ident mach>

The analyzed component contains an internal identifier conflict.

MACHINE MACH
CONSTANTS
cst1,cst2,cst2 /* cst2 appears twice */

PROPERTIES
cst1 : NAT & cst2 : NAT

END

Multiple promotion of operation <ident op>

Each promoted operation must only be mentioned once.

MACHINE M1
INCLUDES M2
PROMOTES

op1, op1
END

Multiple reference of machine <ident mach>

The same machine must only appear once in the INCLUDES, IMPORTS, EXTENDS,
SEES, USES clauses of the same component.

MACHINE M1
INCLUDES M2
SEES M2
/* problem as M2 appears twice */
END

Multiple use of constant <ident cst> in branches of CASE

The same constant <ident cst> appears more than once in the branches of a CASE
substitution, whereas the different cases in a substitution must be mutually exclusive.

MACHINE
M1

OPERATIONS
out <-- op(in) =
PRE in : NAT THEN
CASE in OF
EITHER 0,1,2 THEN out:=0
OR 2,3,4 THEN out:=1 /* 2 appears again */
END

END
END

END

52 Type Checker - Error Message Manual

Multiple use of identifier <ident> in branches of CASE

The same constant appears more than once in the branches of a substitution CASE,
whereas the different cases in a substitution must be mutually exclusive.

MACHINE
M1

CONSTANTS
yy

PROPERTIES
yy : NAT

OPERATIONS
out <-- op(in) = PRE in : NAT THEN
CASE in OF
EITHER yy THEN out := 1
OR yy THEN out := 2 /*yy appears again */
ELSE out := 3
END

END
END

END

Multiple use of label <ident label> in a record expression

The labels contained in a record set or in a record element must be distinct from each
other.

MACHINE
M1

CONCRETE_CONSTANTS
cc

PROPERTIES
cc : struct(aa:NAT,bb:BOOL,aa:0..9)
/* Replace the expression aa:0..9 by ee:0..9 */

END

Object <ident> cannot be valued

The <ident> object is valued, when it is not valuable or unknown. This may be a
typing error or a visibility problem.

MACHINE M1
SETS
S1; S2

CONSTANTS
c1

PROPERTIES
c1 = 1

END

IMPLEMENTATION M1_1
REFINES M1
VALUES
S1 = NAT

; S2 = NAT1
; c1 = 1
; c2 = 1 /* c2 unknown */
END

ERROR MESSAGES 53

<ident op> of machine <ident mch> is called simultaneously with a modi-
fication of variable <ident var>

A local operation can modify directly an imported variable. This message is produced
when one modifies an imported variable in parallel with a call to an operation of the
same imported machine.

IMPLEMENTATION M1_1
REFINES M1
IMPORTS M0
LOCAL_OPERATIONS
loc_op = BEGIN
increment ||
v2 := v2-1

END
/* M0 invariant is broken up */

END

MACHINE M0
VARIABLES
v1,v2

INVARIANT
v1:NAT & v2:NAT & v1<=v2

INITIALISATION
v1:=0 || v2:=0

OPERATIONS
increment = PRE
v1<v2

THEN
v1:=v1+1

END
END

Only one ABSTRACT CONSTANTS clause is allowed

This message is produced when an ABSTRACT CONSTANTS clause should
not take place in the analyzed component. In particular, there cannot be
two ABSTRACT CONSTANTS clauses in the same component, or an
ABSTRACT CONSTANTS clause and a HIDDEN CONSTANTS clause.
Both keywords have the same meaning indeed.

MACHINE M1
ABSTRACT_CONSTANTS
cst1

HIDDEN_CONSTANTS
cst2

PROPERTIES
cst1 : NAT & cst2 : NAT

END

54 Type Checker - Error Message Manual

Only one ABSTRACT VARIABLES clause is allowed

This message is produced when an ABSTRACT VARIABLES clause should not
take place in the analyzed component. In particular, it is illegal to have two AB-
STRACT VARIABLES clauses in the same machine, or an ABSTRACT VARIABLES
clause anda VARIABLES or HIDDEN VARIABLES clause, as these three keywords
have the same meaning.

MACHINE MACH
ABSTRACT_VARIABLES

v1
VARIABLES

v2
INVARIANT

v1:NAT &
v2:NAT

INITIALISATION
v1:=0 ||
v2:=0

END

Only one ASSERTIONS clause is allowed

This message is sent when an ASSERTIONS clause should not take place in the ana-
lyzed component. In particular having two ASSERTIONS clauses is forbidden.

MACHINE MACH
ASSERTIONS

TRUE
ASSERTIONS

TRUE
END

Only one component can be refined: <ident mach> is chosen for the Type
Check continuation

The REFINES clause in the analyzed refinement or the implementation refers to a
number of machines. This is illegal, as two components cannot be refined at the same
time.
In this case the check continues with as refined component the last in the list. This is
the component name that appears in the error message.

REFINEMENT M1_1
REFINES

M1a, M1b
END

ERROR MESSAGES 55

Only one CONCRETE CONSTANTS clause is allowed

This message is generated when a CONCRETE CONSTANTS clause should
not take place in the analyzed component. In particular, there cannot be
two CONCRETE CONSTANTS clauses in the same component,
or a CONCRETE CONSTANTS clause and a VISIBLE CONSTANTS or
CONSTANTS clause,
as these three keywords have the same meaning.

MACHINE M1
CONCRETE_CONSTANTS
cst1

CONSTANTS
cst2

PROPERTIES
cst1 : NAT & cst2 : NAT

END

Only one CONCRETE VARIABLES clause is allowed

This message is generated when a CONCRETE VARIABLES clause does not have
its place in the analyzed component. In particular, it is illegal to have two CON-
CRETE VARIABLES clauses, or a CONCRETE VARIABLES clause and a VISI-
BLE VARIABLES clause, as these two keywords have these same meaning.

MACHINE MACH
CONCRETE_VARIABLES

v1
VISIBLE_VARIABLES

v2
INVARIANT

v1:NAT &
v2:NAT

INITIALISATION
v1:=0 ||
v2:=0

END

56 Type Checker - Error Message Manual

Only one CONSTANTS clause is allowed

This message is generated when a CONSTANTS clause does not have its place in
the analyzed component. In particular, there cannot be two CONSTANTS clauses
in the same component, or a CONSTANTS clause and a VISIBLE CONSTANTS or
CONCRETE CONSTANTS clause. This is because these three keywords have the
same meaning.

MACHINE M1
CONSTANTS
cst1

CONCRETE_CONSTANTS
cst2

PROPERTIES
cst1 : NAT & cst2 : NAT

END

Only one CONSTRAINTS clause is allowed

This message is generated when a CONSTRAINTS clause does not have its place in the
analyzed component. In particular, having two CONSTRAINTS clauses in the same
component is not allowed.

MACHINE
M1(xx, yy)

CONSTRAINTS
xx : NAT

CONSTRAINTS
yy : NAT

END

Only one EXTENDS clause is allowed

This message is generated when an EXTENDS does not have its place in the analyzed
component. In particular, having two EXTENDS clauses in the same component is
impossible.

MACHINE MACH
EXTENDS

MAC1(NAT)
EXTENDS

MAC2(1..100,BOOL)
END

ERROR MESSAGES 57

Only one HIDDEN CONSTANTS clause is allowed

This message is generated when a HIDDEN CONSTANTS clause does not have
its place in the analyzed component. In particular, there cannot be two HID-
DEN CONSTANTS clauses in the same component, or a HIDDEN CONSTANTS
clause and an ABSTRACT CONSTANTS clause. This is because these two keywords
have the same meaning.

MACHINE M1
HIDDEN_CONSTANTS
cst1

ABSTRACT_CONSTANTS
cst2

PROPERTIES
cst1 : NAT & cst2 : NAT

END

Only one HIDDEN VARIABLES clause is allowed

This message is generated when a HIDDEN VARIABLES clause does not have its
place in the analyzed component. In particular, it is illegal to have two HID-
DEN VARIABLES clauses in the same machine, or a HIDDEN VARIABLES clause
and a VARIABLES or ABSTRACT VARIABLES clause. These three keywords have
the same meaning.

MACHINE MACH
HIDDEN_VARIABLES

v1
ABSTRACT_VARIABLES

v2
INVARIANT

v1:NAT &
v2:NAT

INITIALISATION
v1:=0 ||
v2:=0

END

58 Type Checker - Error Message Manual

Only one IMPORTS clause is allowed

This message is generated when an IMPORTS clause does not have its place in the
analyzed implementation. In particular, it is illegal to have two IMPORTS clauses in
the same implementation.

IMPLEMENTATION
M1_1

REFINES
M1

IMPORTS
M2

IMPORTS
M3

END

Only one INCLUDES clause is allowed

This message is generated when an INCLUDES clause does not have its place in the
analyzed component. In particular, it is illegal to have two INCLUDES clauses in the
same component.

MACHINE
M1

INCLUDES
M2

INCLUDES
M3

END

Only one INITIALISATION clause is allowed

This message is generated when an INITIALISATION clause does not have its place
in the analyzed component. In particular, it is illegal to have two INITIALISATION
clauses in the same component.

MACHINE MACH
VARIABLES

v1,v2
INVARIANT

v1:NAT &
v2:NAT

INITIALISATION
v1:=0 /* v1:=0 || v2:=0 is correct */

INITIALISATION
v2:=0

END

ERROR MESSAGES 59

Only one INVARIANT clause is allowed

This message is generated when an INVARIANT does not have its place in the analyzed
component. In particular, it is illegal to have two INVARIANT clauses in the same
component.

MACHINE MACH
VARIABLES

v1,v2
INVARIANT

v1:NAT /* v1:NAT & v2:NAT are correct */
INVARIANT

v2:NAT
INITIALISATION

v1:=0 ||
v2:=0

END

Only one LOCAL OPERATIONS clause is allowed

This message is produced when a LOCAL OPERATIONS clause should not take
place in the analysed component. In particular, it is forbidden to have two LO-
CAL OPERATIONS clause in the same component.

IMPLEMENTATION MM_1
REFINES MM
LOCAL_OPERATIONS

op1 = BEGIN
skip

END
LOCAL_OPERATIONS

op2 = BEGIN
skip

END
END

60 Type Checker - Error Message Manual

Only one OPERATIONS clause is allowed

This message is sent when an OPERATIONS clause no longer has its place in the
analyzed component. In particular, it is illegal to have two OPERATIONS clauses in
the same component.

MACHINE MACH
OPERATIONS

op1 = BEGIN
skip

END
OPERATIONS

op2 = BEGIN
skip

END
END

Only one PROMOTES clause is allowed

This message is generated when a PROMOTES clause does not have its place in the
analyzed component. In particular, it is illegal to have two PROMOTES clauses in the
same component. All of the promoted operations must appear in the same PROMOTES
clause, even if they come from different machines.

MACHINE MACH
INCLUDES MAC01(10), MAC02(1..1000, BOOL)
PROMOTES

op_01
PROMOTES

op_02 /* not correct */
END

Only one PROPERTIES clause is allowed

This message is sent when a PROPERTIES clause does not have its place in the ana-
lyzed component. In particular, it is illegal to have two PROPERTIES clauses in the
same component.

MACHINE MACH
CONSTANTS

c1, c2
PROPERTIES

c1 :NAT
PROPERTIES

c2 :NAT
END

ERROR MESSAGES 61

Only one REFINES clause is allowed

This message is generated when a REFINES clause does not have its place in the
analyzed component. In particular, it is illegal to have two REFINES clauses in the
same component. This is illegal as the two components cannot be refined at the same
time.

REFINEMENT
M1_1

REFINES
M1

REFINES
M2

END

Only one SEES clause is allowed

This message is generated when a SEES clause does not have its place in the analyzed
component. In particular, it is illegal to have two SEES clauses in the same component.

MACHINE MACH
SEES
SEE01

SEES
SEE02

END

Only one SETS clause is allowed

This message is generated when a SETS clause does not have its place in the analyzed
component. In particular, it is illegal to have two SETS clauses in the same component.

MACHINE MACH
SETS

S1
SETS

S2
END

Only one USES clause is allowed

This message is generated when a USES clause does not have its place in the analyzed
component. In particular, it is illegal to have two USES clauses in the same.

MACHINE MACH
USES
MAC1 /* MAC1, MAC2 is correct */

USES
MAC2

END

62 Type Checker - Error Message Manual

Only one VALUES clause is allowed

This message is generated when a VALUES clause does not have its place in the ana-
lyzed component. In particular, it is illegal to have two VALUES clauses in the same
implementation.

IMPLEMENTATION IMP
REFINES
REF

VALUES
S1 = NAT

VALUES
S2 = INT

END

Only one VARIABLES clause is allowed

This is generated when a VARIABLES clause does not have its place in the an-
alyzed component. In particular, it is illegal to have two VARIABLES clauses in
the same component, or a VARIABLES clause and a HIDDEN VARIABLES or AB-
STRACT VARIABLES clause, as these three keywords have the same meaning.

MACHINE MACH
VARIABLES

v1
ABSTRACT_VARIABLES

v2
INVARIANT

v1:NAT &
v2:NAT

INITIALISATION
v1:=0 ||
v2:=0

END

Only one VISIBLE CONSTANTS clause is allowed

This message is generated when a VISIBLE CONSTANTS clause does not have its place
in the analyzed component. In particular, there cannot be two VISIBLE CONSTANTS
clauses in the same component, or a VISIBLE CONSTANTS clause and a CON-
STANTS or CONCRETE CONSTANTS clause. This is because these three keywords
have the same meaning.

MACHINE M1
VISIBLE_CONSTANTS
cst1

CONCRETE_CONSTANTS
cst2

PROPERTIES
cst1 : NAT & cst2 : NAT

END

ERROR MESSAGES 63

Only one VISIBLE VARIABLES clause is allowed

This message is generated when a VISIBLE VARIABLES clause does not have
its place in the analyzed component. In particular, it is illegal to have two
VISIBLE VARIABLES clauses, or a VISIBLE VARIABLES clause and a CON-
CRETE VARIABLES clause, as the two keywords have the same meaning.

MACHINE MACH
VISIBLE_VARIABLES

v1
CONCRETE_VARIABLES

v2
INVARIANT

v1:NAT &
v2:NAT

INITIALISATION
v1:=0 ||
v2:=0

END

Operation <ident op> does not exist in <mach>

The operation <ident op> appears in the PROMOTES clause of the analyzed compo-
nent, but is not defined in its abstraction.
When an operation is promoted, it is considered as having been written in the com-
ponent itself. However, in a refinement, local operations can only be refinements of
abstract machine operations, with exactly the same signature.

MACHINE M1
OPERATIONS
res <-- op2 (xx,yy
PRE
xx:1..100 & yy:1..100

THEN
res :: BOOL

END
END

MACHINE M2(ENS)
OPERATIONS
op1 = skip

; res <-- op2 (xx,yy) = PRE
xx:ENS & yy:ENS

THEN
res:=bool(xx<=yy)

END
END

REFINEMENT M1_1
REFINES M1
EXTENDS
M2(NAT) /* op1 produces an error message as it does not correspond to

any operation in machine M1 */
END

64 Type Checker - Error Message Manual

Operation <ident op> does not exist in abstraction

The local operations of a refinement or an implementation must be specified in the
abstract machine. You cannot define a new operation in a refinement.

MACHINE M1
OPERATIONS
res <-- op1 (xx,yy) =
PRE
xx:1..100 & yy:1..100

THEN
res :: BOOL

END
END

REFINEMENT M1_1
REFINES M1
OPERATIONS
op2 = skip
/*op2 does not exist in M1*/

END

Operation <ident op> has not been implemented

In an implementation, all of the operations defined in the abstract machine must be
implemented.

MACHINE
M1

OPERATIONS
op = skip

END

IMPLEMENTATION
M1_1

REFINES
M1

END
/*op must be implemented*/

Operation name <ident op> in <op header> is a keyword

<ident op> is a reserved word in B language (refer to Chapter 1): it cannot be used
to name an operation.

MACHINE M1
OPERATIONS
MAXINT(xx) = ... /* MAXINT: reserved word */

; res <-- skip = ... /* skip: reserved word */
END

Operation name <ident op> in <op header> should be an identifier

The name of the operations must be a simple name, i.e. a B language identifier (refer
to the definition in Chapter 1).

MACHINE M1
OPERATIONS
_1 <-- val = ... /* _1 is not an identifier */

; res <-- f(x) = ... /* f is not an identifier */
END

ERROR MESSAGES 65

Output parameter <ident> has not been initialised

This message is only generated in implementation. The <ident> output parameter
for the operation currently being type checked was not initialised by the body of this
operation.

IMPLEMENTATION M1_1
REFINES M1
OPERATIONS
ss <-- op(ii) =
IF ii > 1 THEN
ss := 2

END
END
/* ss was not initialised in all branches of IF */

Output parameters <list ident> have not been initialised

This message is only generated in implementation. The <list ident> output parameters
for the operation currently being type checked were not initialised by the body of this
operation.

IMPLEMENTATION M1_1
REFINES M1
OPERATIONS
ss, tt <-- op(ii) =
IF ii > 1 THEN
ss := 2

ELSE
tt := 3

END
END
/* ss and tt were not typed in all of the branches of IF */

Parameter <ident> has not been typed

All scalar parameters must be typed in the CONSTRAINTS clause using a typing
predicate (refer to the definition in Chapter 1).

MACHINE MACH(par1,par2,par3)
CONSTRAINTS
par1 : NAT &
par2 < par1 /* par2 not typed */

END /* par3 not typed */

66 Type Checker - Error Message Manual

Parameter <ident> of <ident op> is already defined in <ident mach>

A conflict between the input/output parameters of the promoted
operation <ident op> and a visible identifier of machine <ident mach> was detected.

MACHINE M2
OPERATIONS
op1(xx) = PRE xx:NAT THEN
skip

END
END

MACHINE M1
INCLUDES M2
PROMOTES
op1

VARIABLES
xx

/* conflict with xx in op1 */
INVARIANT
xx : NAT

INITIALISATION
xx :: NAT

END

Parameters of abstraction <ident mch1> and refinement <ident mch2> dif-
fer

All of the refinements of a vertical development must have the same parameters as the
abstract machine (the number and the name of the parameters must be identical).

MACHINE MACH(var1,var2,ENS)
CONSTRAINTS
var1 : ENS &
var2 : ENS

END

REFINEMENT MACH_1(var,ENS)
/* var is surplus;

var1 and var2 are missing */
REFINES
MACH

END

Prefix <ident1> in <ident1>.<ident2> is a keyword

The <ident1> prefix is a reserved word in the language (refer to Chapter 1). It cannot
be used to prefix a machine.

MACHINE M1
SEES skip.M0
END

Prefix in <ident> should be an identifier

A renaming prefix must be a correct B language identifier (refer to the definition in
Chapter 1).

MACHINE MACH
INCLUDES
1.MAC1 ,
#10x.MAC1 ,
<>.MAC1

END

ERROR MESSAGES 67

Prefix <ident> is used twice

For a given component each renaming prefix can only be used once, even if it is renamed
as a separate machine.

MACHINE MACH
INCLUDES
pref.INC01

EXTENDS
pref.INC02

END

<exp> ran(<exp>) should be a set of sets

The operator used in <exp> expects as its argument a function with a starting set
that is a set of sets.

MACHINE
M1

SETS
SS; TT

CONSTANTS
fonction,
relation

PROPERTIES
fonction : SS --> TT &
relation = rel(fonction)
/* TT should be a set of sets */

END

Read only or unknown left hand side <ident>

This error message is generated when the becomes ”becomes equal” or ”call-up opera-
tion” substitution attempts to modify an entity that cannot be modified. The visibility
tables show which entities are accessible in write mode and which are not, depending
on which clause is considered.

MACHINE M1
CONSTANTS
c1

PROPERTIES
c1 : NAT

OPERATIONS
ini = (c1, UnknownId := 0, 0)

/* c1 constant that cannot be modified,
UnknownId unknown identifier */

END

68 Type Checker - Error Message Manual

Refined component <ident> cannot be renamed

The name of the component that appears in the REFINES clause is preceded by a
renaming prefix. This is illegal.

/* Incorrect refinement: */
REFINEMENT M1_1
REFINES pp.M1
END

/* Correct refinement: */
REFINEMENT M1_1
REFINES M1
END

Right hand side of comparison <exp> has not been typed

The right hand side of <exp> has not been typed. This message may be generated
when the typing predicates are placed after the <exp> property. The definition of a
typing predicate is described in Chapter 1.

MACHINE
M1(pp)

CONSTRAINTS
1 < pp & /* pp has not yet been typed*/
pp : NAT

CONSTANTS
cc

PROPERTIES
2 <= cc & /* cc has not yet been typed*/
cc : NAT

VARIABLES
vv

INVARIANT
3 > vv & /* vv has not yet been typed*/
vv : NAT

INITIALISATION
vv := 0

OPERATIONS
op(ii) = PRE 4 >= ii & ii : NAT THEN skip END

/* ii has not yet been typed*/
END
/* To correct this specification, simply reverse the predicates */

Right hand side of comparison <exp> should be an integer

A comparison can only be made between integers.

MACHINE
M1

CONSTANTS
cc

PROPERTIES
cc : BOOL &
2 <= cc

END

ERROR MESSAGES 69

Right hand side of <exp> has not been typed

The right hand side of <exp> has not been typed. This message may be generated
when the typing predicates are placed after the <exp> property. The definition of a
typing predicate is described in Chapter 1.

REFINEMENT
M1

VARIABLES
pp

INVARIANT
1 /= pp & /* pp has not yet been typed*/
pp : NAT

INITIALISATION
pp := 4

OPERATIONS
uu, vv <-- op = BEGIN
uu := 1;
IF vv = 1 THEN /* vv has not yet been typed*/
vv := 2

END
END

END

Right hand side of <exp> should be an integer

The operator used in <exp> expects an integer on its right hand part.

MACHINE
M1

OPERATIONS
vv <-- op1 = vv := 2 * UnknownVar;
vv <-- op2 = vv := 2 - TRUE;
vv <-- op3 = vv := TRUE mod FALSE

END

70 Type Checker - Error Message Manual

Right hand side of <exp> should be a relation

The operator used in <exp> expects a relation on the right hand side.

MACHINE
M1

SETS
EE; FF

VARIABLES
relation, var

INVARIANT
relation : EE <-> FF & var : EE

INITIALISATION
relation :: EE <-> FF || var :: EE

OPERATIONS
v1 <-- op1 = v1 := (relation || var);

/* var is not a relation */
v2 <-- op2 = v2 := (relation >< Rinconnue)

/* Rinconnue is not a relation */
END

Right hand side of <exp> should be a sequence

The operator used in <exp> expects a sequence on its right hand side.

MACHINE
M1

PROPERTIES
sequence : seq(INT)

OPERATIONS
vv <-- op1 = vv := sequence ^ 2;

/* 2 is not a sequence */
vv <-- op2 = vv := a1 -> UnknownSeq

/* UnknownSeq is not a sequence */
END

ERROR MESSAGES 71

Right hand side of <exp> should be a set

The operator used in <exp> expects a set on the right hand side.

MACHINE
M1

SETS
SS; TT

VARIABLES
relation1, relation2

INVARIANT
relation1 : SS <-> TT

INITIALISATION
relation1 :: SS <-> TT

OPERATIONS
vv <-- op2 = vv := 1..2 /\ UnknownEns;

/* UnknownEns is not a set */
vv <-- op3 = (vv :: SS --> 5); /*5 is not a set */
vv <-- op4 = vv := SS - TRUE /*TRUE is not a set*/

END

Seen machine <ident mach> cannot be instanciated

Only the machines referenced in the INCLUDES, IMPORTS and EXTENDS clauses
can be instanced.

MACHINE MACH
SEES
MCH01(NAT)

END

Sequence in <exp> should not be empty

The operator used in <exp> expects a non empty sequence as an argument.

MACHINE
M1

CONSTANTS
c1

PROPERTIES
c1 = first(<>) /* first awaits as argument a non empty sequence */

END

72 Type Checker - Error Message Manual

Sequencing substitution is forbidden in a local operation specifications :
<subst>

This message is produced when a sequencing substitution ”;” is used in a local operation
specification, as this substituion is not allowed in specification. The simultaneous
substituion ”||” is recommended instead.

IMPEMENTATION
MM_1

REFINES
MM

CONCRETE_VARIABLES
v1, v2

INVARIANT
v1 : NAT & v2 : NAT

INITIALISATION
v1 := 0; v2 := 0

LOCAL_OPERATIONS
op = BEGIN
v1 := 0; v2 := 0

/* correct: v1:=0 || v2 := 0 or v1,v2 := 0,0 */
END

OPERATIONS
op = BEGIN
v1 := 0; v2 := 0

END
/* here, it’s allowed */
END

Sequencing substitution is forbidden in a machine: <subst>

This message is generated when the sequencing substitution ”;” is used in an abstract
machine. However this substitution is only allowed in refinement and in implementation
modes. However, the simultaneous substitution ”||” is recommended in specification
mode.

MACHINE MACH
VARIABLES
v1, v2

INVARIANT
v1 : NAT & v2 : NAT

INITIALISATION
v1 := 0; v2 := 0

/*write correct: v1:=0 || v2 := 0 or v1,v2 := 0,0 */
END

ERROR MESSAGES 73

Set <ident set> is already defined

An identifier conflict involving the <ident set> set was detected.

MACHINE MACH
SETS

S1;S1
END

The ABSTRACT CONSTANTS clause is not allowed in an implementation

The ABSTRACT CONSTANTS clause cannot be used in an implementation. In this
case it is preferable to use the VISIBLE CONSTANTS clause.

IMPLEMENTATION M1_1
REFINES
M1

ABSTRACT_CONSTANTS
cst

PROPERTIES
cst : NAT

END

The ABSTRACT VARIABLES clause is not allowed in an implementation

The ABSTRACT VARIABLES clause cannot be used in an implementation. In this
case it is preferable to use the CONCRETE VARIABLES clause.

IMPLEMENTATION
M1

REFINES
M1

ABSTRACT_VARIABLES
v1

INVARIANT
v1 : NAT

INITIALISATION
v1 := 0

END

The component <ident mach> cannot be referenced by itself

A B language component cannot be referenced by itself in one of its SEES, INCLUDES,
EXTENDS or USES clauses.

MACHINE MACH(XX)
CONSTRAINTS
card(XX)=5

INCLUDES
MACH(1..5) /* illegal attempt at recursivity */

END

74 Type Checker - Error Message Manual

The CONSTRAINTS clause is only allowed in a machine

The analyzed component should not contain a CONSTRAINTS clause. This message
is generated in a refinement or in an implementation when attempting to specify pa-
rameter constraints. These constraints must be specified exclusively in the abstract
machine.

REFINEMENT
M1(xx, yy)

REFINES
M1

CONSTRAINTS
xx : NAT & yy : NAT

END

The HIDDEN CONSTANTS clause is not allowed in an implementation

The HIDDEN CONSTANTS clause cannot be used in an implementation. In this case
it is preferable to use the VISIBLE CONSTANTS clause.

IMPLEMENTATION M1_1
REFINES
M1

HIDDEN_CONSTANTS
cst

PROPERTIES
cst : NAT

END

The HIDDEN VARIABLES clause is not allowed in an implementation

The HIDDEN VARIABLES clause cannot be used in an implementation. In this case
it is preferable to use the CONCRETE VARIABLES clause.

IMPLEMENTATION
M1

REFINES
M1

HIDDEN_VARIABLES
v1

INVARIANT
v1 : NAT

INITIALISATION
v1 := 0

END

ERROR MESSAGES 75

The implementation <ident mach> cannot be refined

The analyzed component refines an implementation. However, only abstract machines
and refinements can be refined. The implementation is the final step in a vertical
development (development by successive refinements).

IMPLEMENTATION IMP
REFINES MACH
END

REFINEMENT REF
REFINES IMP /*error*/
END

The IMPORTS clause is only allowed in an implementation

This message is generated when an abstract machine or a refinement contains an IM-
PORTS clause. This is exclusively reserved for the implementation. However, the
INCLUDES clause may be used.

MACHINE Mach
IMPORTS
ImpMch0(10)

END

The INCLUDES clause is not allowed in an implementation

This message is generated when an implementation contains an INCLUDES clause.
This is only allowed in abstract machines and in refinements. However, the IMPORTS
clause, dedicated to the implementation, may be used.

IMPLEMENTATION M1_1
REFINES M1
INCLUDES
IncMch04(10)

END

The LOCAL OPERATIONS clause is only allowed in an implementation

This message is produced when an abstract machine or a refinement contains a LO-
CAL OPERATIONS clause. The latter can only be used in implementations.

MACHINE Mach
LOCAL_OPERATIONS
op = skip

END

76 Type Checker - Error Message Manual

The refined machine <ident mach> cannot be required

The abstract machine refined by the analyzed component cannot appear in any of its
visibility clauses.

REFINEMENT MAC02
REFINES MACH
INCLUDES

MACH /* MACH cannot be included */
END

The REFINES clause is not allowed in a machine

This message is sent when a REFINES clause appears in an abstract machine, when an
abstract machine cannot refine a B language component. Only a refinement (identified
by the first word of the REFINEMENT source) and an implementation (identified by
the first word in the IMPLEMENTATION source) can (and must) contain a REFINES
clause.

MACHINE M0
REFINES
M1

END

The REFINES clause missing

The analyzed refinement or implementation does not have a REFINES clause. This
clause is mandatory.

REFINEMENT REF_1
END

The USES clause is only allowed in a machine

This message is generated when a refinement or an implementation contains a USES
clause. This clause is only allowed in an abstract machine.

REFINEMENT
M1_1

REFINES
M1

USES
M2

END

ERROR MESSAGES 77

The VALUES clause is only allowed in an implementation

This message is generated when an abstract machine or refinement contains a VALUES
clause. The valuation of constants and sets is only possible in an implementation.
The PROPERTIES clause may possibly force a constant to take a given value, but it
will still have to be valued, with the same value, in the implementation.

MACHINE
M1

CONSTANTS
c1

VALUES
c1 = 0

END

The VARIABLES clause is not allowed in an implementation

This message is generated when an implementation contains a VARIABLES clause.
This clause is equivalent to the HIDDEN VARIABLES clause and it cannot there-
fore be used in an implementation. In this case it is preferable to use the CON-
CRETE VARIABLES clause.

IMPLEMENTATION
M1

REFINES
M1

VARIABLES
v1

INVARIANT
v1 : NAT

INITIALISATION
v1 := 0

END

78 Type Checker - Error Message Manual

Unknown renamed identifier: <ident1>.<ident2>

Form <ident1>.<ident2> is a renaming: it designates the identifier <ident2> defined
in a requested machine renamed using the <ident1> prefix.
This message is generated when identifier <ident2> is visible in none of the machines
renamed with the <ident1> prefix. This may be due to a typing error or violation of
the visibility constraints.

MACHINE M1
SEES
pp.M2

END

MACHINE M2
ABSTRACT_CONSTANTS
cst2

PROPERTIES
cst2 : NAT

END

REFINEMENT M1_1
REFINES M1
ABSTRACT_CONSTANTS
pp.cst2

PROPERTIES
pp.cst2 : NAT

END

Used machine <ident mach> cannot be instanciated

Only the machines referenced in the INCLUDES, IMPORTS and EXTENDS clauses
can be instanciated.

MACHINE MACH
USES
MCH01(NAT)

END

ERROR MESSAGES 79

Use of non implementable arrays in <exp>

This message is generated for an implementation. An array is not implementable in B0
if its array is not an interval or an enumerated set.

IMPLEMENTATION M1_1
REFINES M1
VISIBLE_CONSTANTS
cc

PROPERTIES
cc : INTEGER --> BOOL

CONCRETE_VARIABLES
vv

INVARIANT
vv : INTEGER --> BOOL

INITIALISATION
vv := cc /* cc is not a finite set of indices */

END

Variable <ident var> has not been typed

All of the variables must be typed in the INVARIANT clause using a typing predicate
(refer to the definition in Chapter 1).

MACHINE MACH
VARIABLES
var1, var2, var3

INVARIANT
var1 : NAT &
var2 < var1 /* var2 must be typed */

/* var3 must be typed */
INITIALISATION
var1, var2, var3 := 5, 6, 7

END

Variable <ident> is not an implementable array

This message is generated for an implementation. An array is not implementable in B0
if its array is not an interval or an enumerated set.

IMPLEMENTATION M1_1
REFINES M1
CONCRETE_VARIABLES vv
INVARIANT
vv : INTEGER --> BOOL

INITIALISATION
vv := INTEGER * {TRUE} /* INTEGER is not bounded */

END

80 Type Checker - Error Message Manual

Variable <ident> should be initialised

All of the variables defined in a component must be initialised in the INITIALISATION
clause.

MACHINE MACH
VARIABLES

xx,yy
INVARIANT

xx:NAT & yy:NAT
INITIALISATION

xx:=0 /* yy must be initialised */
END

Variant <exp> should designate a natural

In a WHILE loop, the variant must be an expression that designates a natural integer.

IMPLEMENTATION M1_1
REFINES M1
OPERATIONS
opM1 = BEGIN
WHILE 12 <0 DO skip INVARIANT 6 : NAT VARIANT "string" END;
/* "string" is not a natural */
WHILE 12 <0 DO skip INVARIANT 6 : NAT VARIANT ident_inconnu END
/* ident_inconnu’s type is unknown */

END
END

VAR substitution is forbidden in a local operation specification : <subst>

The VAR substitution is a programming substitution reserved for refinement and im-
plementation. In a local operation specification, a LET or ANY substitution must be
used instead.

IMPLEMENTATION MM_1
REFINES MM
LOCAL_OPERATIONS
op = VAR vv IN vv := 2 END
/* incorrect specification:

LET vv BE vv = 2 IN skip END is correct */
OPERATIONS
op = VAR vv IN vv := 2 END
/* correct implementation */

END

ERROR MESSAGES 81

VAR substitution is forbidden in a machine: <subst>

The VAR substitution is a programming substitution reserved for refinements and
implementations. In a machine, a LET or ANY substitution must be used instead.

/* Incorrect machine: */
MACHINE M1
OPERATIONS
op = VAR vv IN vv := 2 END

END

/* Correct machine: */
MACHINE M1
OPERATIONS
op = LET vv BE vv = 2 IN skip END

END

WHILE substitution is forbidden in a local operation specification : <subst>

This message is produced when a WHILE loop is used in a local operation specification.
This instruction is not a specification substitution, indeed.

IMPEMENTATION
MM_1

REFINES
MM

CONCRETE_VARIABLES
vv

INVARIANT
vv : NAT

INITIALISATION
vv := 0

LOCAL_OPERATIONS
opWhile =
WHILE vv > 10
DO skip
INVARIANT vv := NAT
VARIANT vv
/* forbidden */
END

OPERATIONS
opWhile =
WHILE vv > 10
DO skip
INVARIANT vv := NAT
VARIANT vv
END
/* allowed */

END

82 Type Checker - Error Message Manual

WHILE substitution is only allowed in an implementation: <subst>

This message is generated when a WHILE loop is used in an abstract machine or in a
refinement. This substitution is only allowed in implementation mode, indeed.

MACHINE MACH
VARIABLES
vv

INVARIANT
vv : NAT

INITIALISATION
vv := 0

OPERATIONS
opWhile =
WHILE vv > 10
DO skip
INVARIANT vv := NAT
VARIANT vv
END

END

Wrong number of parameters for instanciated machine <ident mach>

For an inclusion with instancing, you must instance all of the parameters of the included
machine.

MACHINE
M1

INCLUDES
M2(TRUE)
/* value of p2 is missing */

END

MACHINE
M2(p1, p2)

CONSTRAINTS
p1 : BOOL & p2 : INT

END

Wrong type for actual input parameters of called operation <ident op>

The formal input parameters for the called operation <ident op> and the effective
parameters are not of the same type. The types of formal operation parameters and
the types of values set as arguments for a call-up, must be identical.

MACHINE MACH
INCLUDES
MAC01

OPERATIONS
op = oper01("error")

END

MACHINE MAC01
OPERATIONS
oper01(x1) = PRE x1:NAT THEN
skip

END
END

ERROR MESSAGES 83

Wrong type for actual output parameters of called operation <ident op>

The formal output parameters from the <ident op> operation and the effective param-
eters are not of the same type. The types of the formal parameters of the operation and
the types of variables that receive the returned value after call-up must be identical.

MACHINE MACH
INCLUDES
MAC01

VARIABLES
ww

INVARIANT
ww : BOOL

INITIALISATION
ww := TRUE

OPERATIONS
op = ww <-- oper01
/* ww is a Boolean value */

END

MACHINE MAC01
OPERATIONS
vv <--oper01 =
vv := 2

/* vv is an integer value */
END

Wrong type for actual parameter <ident param> of machine <ident mach>

This actual parameters is used when the instancing of an included machine is not of the
correct type. In practice, when performing an instantiated inclusion, the types of the
included machine’s formal parameters and the types of the effective parameters must
be identical.
This may also be caused by a syntax error (is <ident> a correct B language identifier?)
or a visibility error (is the <ident> object visible?).

MACHINE
M2(p1, p2, p3)

CONSTRAINTS
p1 : NAT & p2 : BOOL & p3 : INT

END

MACHINE M1
INCLUDES
M2(UnknownParam, 67, _1)

/*UnknownParam is unknown,
67 is not the correct type,
_1 is not a B ident*/

END

84 Type Checker - Error Message Manual

Wrong type for expression <exp> in a CASE substitution

The expression that should determine the performance of the CASE substitution has
an illegal type. This expression must be an integer type, a Boolean type, or an element
of an abstract set or of a listed set.

MACHINE
M1

VARIABLES
SS

INVARIANT
SS <: NAT

INITIALISATION
SS :: POW(NAT)

OPERATIONS
op1 =
CASE "sting" OF
EITHER 1 THEN skip
ELSE skip
END
END;

op2 =
CASE UnknownExp OF
EITHER 1 THEN skip
ELSE skip
END
END;

op3 =
CASE SS OF /*SS is part of NAT*/
EITHER 1 THEN skip
ELSE skip
END
END

END

Chapter 5

Internal error messages

The messages presented in this chapter do appear only in case of forbidden use of Atelier
B - for example, manual use of files from the Data Base Project. It is therefore necessary
to redo type checking for the component stated in the message.

Bad magic number for <ident mach>.nf

The .nf file assigned to component <ident mach> was not generated with the same
version of the type checker. It cannot therefore be used by this version. Run the type
checker again on <ident mach>.

Cannot load information file of component <ident mach>

The analyzed component references the <ident mach> component whose .nf file does
not exist or is empty.

Wrong Normal Form format for the refined structure.

The .nf file relating to the refined component was modified by an action external to
Atelier B.

85

	Introduction
	Definitions
	Warning messages
	Error messages
	Internal error messages

