
The ProB Validation Tool

Michael Leuschel

• Flexible & Extensible Validation Tool

for High-level Specification Formalisms

• Multiple Languages:

• B, Z, CSP, Event-B, Promela, dSL,

...

• Multiple Validation Technologies

derived from operational semantics:

• Animation, Model Checking,

Refinement Checking, ...

ProB in 1 slide

Axioms may be

inconsistent

Domain Experts and

Managers need to

understand the models

Formal Models are

hard to understand

What we see:What others

see:

⠠⠘⠢⠶⠷⠾⠽⠷⡁⡋⡴⡻⢅

⢆⡱⡧⡦⡯⡮⢃⢍⢐⣮⢿⢾⢿⢿

⣔⣕⣗⣄⢱⢨⢨⢳⣏⣷⣸⡴⡴

⡼⠗⠁⠫⠵⠾⡁⡃⠯⢝⢣⢢⢬

Summary: Why

additional validation
• It is easy to overlook missing/wrong

functionality

• Even proven models contain mistakes

• Even FM experts can make mistakes

• Specifications get more and more

complex

• Only Domain Experts can spot certain

errors

Additional Validation

offered by ProB

• Animation: show behaviour of model in

clear terms

• Graphical Domain Specific Visualization

• Visualization of State Space

• Model Checking

• Refinement Checking

Some Distinguishing

Aspects of ProB• Symmetry Reduction

• Constraint solving

• Dealing with large Data

• Supports directly high-level formalism

• Formalisms can be combined

(CSP||B)

• Graphical Animation with

BMotionStudio

How ?

Scaling up ProB

• Uses Constraint Logic Programming

• Many optimisations

• Handle industrial specifications in ProB:

• New Parser, Atelier-B compliant

• New Typechecker (unification-based)

• Extended Interpreter: almost 100 %

support for B

2. New Datastructure for

Large Sets & Relations

• Before:

• Sets represented as Prolog lists

[int(1),int(2)] for {1,2}

• Now:

• self-balancing AVL-Trees used by

ProB kernel if possible

3. Improved Constraint

Solving

• Heap of Choice Points for

enumeration:

• priority: estimated # of

solutions

• priority 0: gives (1) AVL

tree

dr = ran(ri) & ri =r~ & 3:dom(ri) &

r = {(1|->1),(6|->2),(7|->3),(8|->4),(9|->5)}

Could we have used other

technologies ?

Proof
SAT

SMT

Sieve Experiment

• For cur=2 & limit =

• 10,000: 0.2 secs

• 100,000: 2.1 secs

• 1,000,000: 21.9 secs

• Could be further optimised

numbers := numbers - ran(%n.(n:cur..limit/cur|cur*n))

older version:

out of memory after 2 minutes

Sieve Experiment

(similar for Brama)(cf Alloy)

(25 minutes)

(25 minutes)

(5 minutes)

20000

(0.4 sec)*

*(0.2 sec with ProB 1.3.2-beta5)

Disclaimer:

Alloy/Kodkod can be much better than

ProB at other tasks !

(3.5 sec)

CoreASM

(thanks to Roozbeh Farahbod)

First Step of Sieve Prime Number Algorithm; using a set representation

BMotionStudio

Problem-specific animation

[Ladenberger et al., FMICS’09]

BMotionStudio

Thanks !
• Jens Bendisposto

• Carl Friedrich Bolz

• Nadine Elbeshausen

• Fabian Fritz

• Marc Fontaine

• Michael Jastram

• Li Luo

• Daniel Plagge

• Mireille Samia

• Corinna Spermann

• Dennis Winter

• Michael Butler

• Thierry Massart

• Edd Turner

