
Formally Checking
Large Data Sets
in the Railways
- engineering approach -

Lilian Burdy
Thierry Lecomte (speaker)

Michael Leuschel

Definitions
Data validation ≡

Automatic check of large data sets against properties

Data generation ≡
Data validation of partly instantiated large data sets

100,000+ raw data chunks Expressed using
B mathematical
language

Are they
• Consistent ?
• Correct ?
• Safe ?

Model-checker
(no human in the loop)

Is it possible to calculate missing data
such as they are all
• Consistent ?
• Correct ?
• Safe ?

3

B models

Target:
Cyclic, monolithic software

No IT, no OOP

Source code generated,
mathematical demonstrations / scripts

Software modelling

Event-B models

Source code generated,
Animation,

mathematical demonstrations / scripts

Target:
Systems

System modelling Data validation

Compliance

Counter-examples

B models

Data
CSV, Excel, Text

Rules

B mathematical

language
XML

Application to railways

Data generation

Rationale
Data are uploaded on embedded equipments for exploitation

Any error may lead to an accident

System Level

Database

Application to railways
Data sets ≡

Data describing the topology
of the track

- Addressing plan: networked equipments, IP addresses

- Scheme plan

- System Data: 101 tables, around 50,000 data for
Mexico L12

Application to railways

Raw data as inputs
- csv files, every csv column is a constant in the B model

- data are not preprocessed: everything is modeled in B
mathematical language

- Supported types: BOOL, INT , STRING, seq(INT), seq(STRING).

Name = {0|->Route_tx_001, 1 |->Route_vx_002, 2 |-> Switch_w_003, …}

ID = {0 |->243, 1|->128, 2|->256, …}

Application to railways
Properties ≡

Relationships between the data

- Properties expressed with B mathematical language and decorated with substitution-like syntax
- Use of intermediate constructs to factorize development

- Simple specification and detection of counter-examples

data1

data2

data3

data4

Intermediate
construct1

Intermediate
construct2

Intermediate
construct3

Rule

Application to railways
RULE DB_GENERAL.3
COUNTEREXAMPLE

the name %1 is the name of an equipment of type ZC but is not in table ZC
ANY

name1, ind2
TYPE

STRING, INT
WHERE

ind2 : dom(ATC_Equipments_Cap!Name) &
ATC_Equipments_Cap!ATC_Equipment_Type(ind2) = "ZC" &
ATC_Equipments_Cap!Name(ind2)=name1

EXPECTED
#ind1.(ind1 : dom(ZCs_Cap!Name) & name1=ZCs_Cap!Name(ind1))

END

Rule name

Values to search for

Conditions to fulfill

If not fulfilled,
counterexample is
found and error
message is displayed

RULE NAME STATUS COUNTEREXAMPLES

Rule_DB_General KO 2

COUNTEREXAMPLE_0
the name ZC_A is the name of an equipment of type ZC but is not in table ZC

COUNTEREXAMPLE_1
the name ZC_AB is in table ZC but is not the name of an equipment of type ZC

execution

Sheet name Data name

A rule can be made of several
sequential searches for
counterexamples

Application to railways
Intermediate construct: Associate to each secondary detection device(sdd) and each
consecutive points on the same track of the sdd the part of the track between the two
points.

SDD_Point_Normal_Normal: dom(Secondary_Detection_Devices_Cap!ID) +-> (dom(Points_Cap!Name) * dom(Points_Cap!Name) +-> dom(Tracks_Cap!Name)*(INT*INT))

SDD_Point_Normal_Normal =
%sdd.(sdd : dom(Secondary_Detection_Devices_Cap!ID) & size(Secondary_Detection_Devices_Cap!Point_ID_List(sdd)) >= 2
|
%(point1,point2).(point1 : SDD_Point_list(sdd)

& point2 : SDD_Point_list(sdd)
& point1 /= point2
& Points_Cap!Track_ID(point1) = Points_Cap!Track_ID(point2)
& bool(TrackKpBegin(Tracks_Cap!Name~(Points_Cap!Track_ID(point1))) <= TrackKpEnd(Tracks_Cap!Name~(Points_Cap!Track_ID(point1))))
= bool(PointKpToe(point1) <= PointKpToe(point2))

& !point3.(point3 : SDD_Point_list(sdd) - {point1,point2}
& Points_Cap!Track_ID(point3) = Points_Cap!Track_ID(point1)
=> PointKpToe(point3) /: min({PointKpToe(point1),PointKpToe(point2)}) .. max({PointKpToe(point1),PointKpToe(point2)}))

| Tracks_Cap!Name~(Points_Cap!Track_ID(point2))
|-> (min({PointKpToe(point1),PointKpToe(point2)})

|-> max({PointKpToe(point1),PointKpToe(point2)}))))

Application to railways

Rules to verify:
- 1.000 rules per project (generic / specific corpus)
- 450 rules formalized (rules added progressively as new projects are started)
- Target: 700 rules in 2013

Intermediate constructs:
- 150 (reused from one project to another)

Application to railways

Application to 20 projects for each major release

Data validation process
few hours to verify 300 rules

Manual
30 days to verify 300 rules VS

Such as
generated binaries
are identical

=
Given that
input models are
different

≠

Compiler Certification
[Contribution to]

Modernization of High Speed Train
Embedded Diagnosis System (EDS)

Compiler
AD-HOC

Binary code
(EDS)

(ancestor of)
hierarchical grafcets

PASCAL programs
(with French keywords)

New Compiler
AD-HOC

Binary code
(EDS)

IEC 61131
grafcets

IEC 61131
Structured Text

Challenge
IS

TO Develop
a new compiler

Import
old models

IEC 61131 -3
grafcets

IEC 61131 -3
Structured Text

Binary code
(EDS)

Compiler Certification
[Contribution to]

Compiler
AD-HOC

Binary code
(EDS)

(ancestor of)
hierarchical grafcets

PASCAL programs
(with French keywords)

New Compiler
AD-HOC

Binary code
(EDS)

IEC 61131
grafcets

IEC 611131
Structured Text

Safety Integrity Level 2

Key idea:
Use data validation/generation process to check binary code
against obsolete input models

800k bytes

~30,000 lines of code
162 grafcets
1000+ steps

Compiler Certification
[Contribution to]

(ancestor of)
hierarchical grafcets

PASCAL programs
(with French keywords)

Binary code
(EDS)

Key idea:
Use data validation/generation process to check binary code
against obsolete input models

800k bytes

~30,000 lines of code
162 grafcets
1000+ steps

Compiler Certification
[Contribution to]

Pre-processing

Pre-processing

Formal properties

Generate symbol table

Check compliancy

Find counter-examples

Key idea:
Use data validation/generation process to check binary code
against obsolete input models

Compiler Certification
[Contribution to]

Formal properties

Key idea:
Use data validation/generation process to check binary code
against obsolete input models

~80 properties identified related to 1200 variables and code
• P01 No more dead code in the binary than in the input models
• P02 RAM memory space usage in binary file should comply with memory access in

input models
• P03 Sub-grafcets called in the binary file should comply with sub-grafcets activated

in input models

No symbol table available, so structure information should be recovered
→ property verification is ordered in order to reuse data previously generated

Compiler Certification
[Contribution to]

P03 P02 P01 …..

Stackless – intermediate results stored in specific memory area

• P03 Sub-grafcets called in the binary file should comply with sub-grafcets activated
in input models

Compiler Certification
[Contribution to]

• P03 Sub-grafcets called in the binary file should comply with sub-grafcets activated
in input models

Compiler Certification
[Contribution to]

List grafcet activations (old models) List grafcet activations (binary)

there exists a bijection bij that associates to a node of G7 a node of ADR such as children of
both nodes match

bij: G7 >->> ADR &!xx.(xx: G7 => bij[next[{xx}]] = suiv[bij[{xx}]])

Build B model of activations

G7 = {main, G1, G2, G3, G4, …. }
next: G7 <-> G7
next = { …, G7 |-> G11, …}

Build B model of activations

ADR = {0x01, 0x13, 0x15, …}
suiv: ADR <-> ADR
suiv = { … , 0x10 |-> 0x15, …}

162! =
1229694218739449434110178928491750176572300599427169306620762521167814540117728965860988098467051531783599507442
9904709708273401807824365415928975695099566042246320538220924308010459938381430588227927174194100982189204709615
293198326390773410925903872000000000000000000000000000000000000000

Compiler Certification
[Contribution to]

Compiler Certification
[Contribution to]

Modelling completed in 2 days

Complete verification performed in 2 minutes:
- Models and binary match
- Some errors found like:

- infinite loop (G13 activates G23, G23 activates G13)
- dead code (elements declared but never used)

Conclusion & perspectives

Data validation & data generation able to deal with industrial problems
• Data validation time divided by 10 at least
• Automation slightly improves the level of confidence

Conclusion & perspectives

Data validation & data generation able to deal with industrial problems
• Data validation time divided by 10 at least
• Automation slightly improves the level of confidence

Technology is mature
• Several R&D projects to assess and improve tools and methods
• Daily production on worldwide applications not restricted to B

• Proprietary tools
• Atelier B 4.1 integrates data validation projects

Conclusion & perspectives

Data validation & data generation able to deal with industrial problems
• Data validation time divided by 10 at least
• Automation slightly improves the level of confidence

Technology is mature
• Several R&D projects to assess and improve tools and methods
• Daily production on worldwide applications not restricted to B applications

• Proprietary tools
• Atelier B 4.1 integrates data validation projects

Certification environment to come

Formal properties

Data
Data generated

Compliancy

Counter-examples

B models

Checker 1

Checker 2

Thank you
for your attention

Lilian Burdy
Thierry Lecomte (speaker)

Michael Leuschel

