Formally Checking

Large Data Sets in the Railways

- engineering

approach -

Lilian Burdy Thierry Lecomte (speaker)

Michael Leuschel

Definitions

Data validation \equiv

Automatic check of large data sets against properties

100,000+ raw data chunks

- 4	A	B	C	D	E	F	G	H	
1	Name	ID	IP	Туре	UpLink	DownLink	Length	GPS 1	GPS 2
2	Route_tx_001	243		R	Route_tx_005	Route_vx_002	345		
3	Route_vx_002	128		R	Route_vx_002	EndLine_000	128		
4	Switch_w_003	256	192.16.4.55	S	Route_vx_128	Route_tx_006	23		
5	Relay_s_004	12	192.16.4.10	Y				N 50.85 963	O 6.84 201
6	Route_tx_005	3		R	Route_tx_006	Route_vx_128	291		
7	Relay_s_001	55	192.16.4.125	Y					
8	Route_tx_006	22		R	EndLine_001	Route_vx_002	110		
9	Route_vx_128	127		R	Route_tx_006	Route_vx_002	145		
10	Switch_w_009	242	192.16.4.10	S	Route_vx_128	Route_tx_005	34		
11	EndLine_000	0		E		Route_vx_002	1		
12	EndLine_001	1		E	Route_vx_002		1		
13	Signal_xs_002	32	192.16.4.12	G	Route_vx_128		22		
14	Signal_xs_003	33	192.16.4.13	G	Route_tx_006		51		
15	Balise_b_001	301		В	Route_vx_128		0	N 50.85 933	O 6.84 508
16	Balise_b_002	302		В	Route_tx_005		0	N 50.86 123	0 6.84 550

Expressed using B mathematical language Model-checker (no human in the loop)

😴 Pro B

Are they

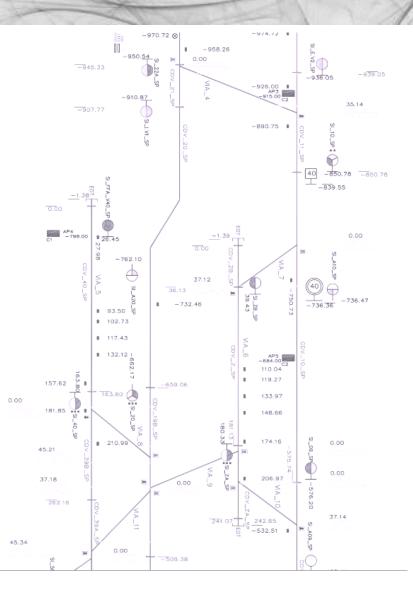
- Consistent ?
- Correct ?
- Safe ?

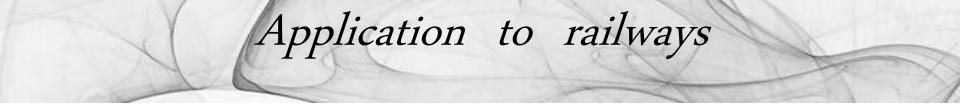
Data generation ≡

Data validation of partly instantiated large data sets

1	A	8	C	D	E	F	G	н	Same and
1	Name	ID	IP	Туре	UpLink	DownLink	Length	GPS 1	GPS 2
2	Route_tx_001	243		R	Route_tx_005	Route_vx_002	345		
3	Route_vx_002	128		R	Route_vx_002	EndLine_000	128		
4	Switch_w_003	256	192.16.4.55	S	Route_vx_128	Route_tx_006	23		
5	Thelay_3_004		192.10.4.10	4				N 30.03 505	0 0.04 202
6	Route_tx_005								
7	Nelay_s_001	55	192.10.4.12						
8	Route_tx_006	22		R	EndLine_001	Route_vx_002	110		
9	Route_vx_128	127		R	Route_tx_006	Route_vx_002	145		
10	Switch_w_009	242	192.16.4.10	S	Route_vx_128	Route_tx_005	34		
11	EndLine_000	0		E		Route_vx_002	1		
12	EndLine_001	1		E	Route_vx_002		1		
13	Signal_xs_002	32	192.16.4.12	G	Route_vx_128		22		
14	Signal_xs_003	33	192.16.4.13	G	Route_tx_006		51		-
15	Balise_b_001	301		В	Route_vx_128		0	N 50.85 933	0 6.84 508
16	Balise_b_002	302		В	Route_tx_005		0	N 50.86 123	0 6.84 550
					prog.				

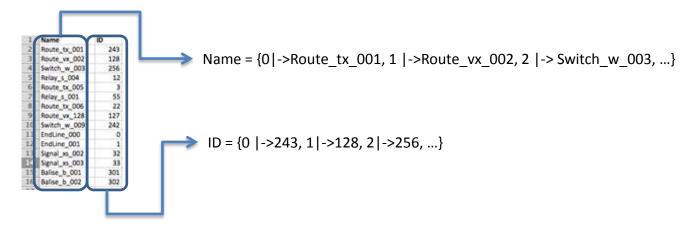
Is it possible to calculate missing data such as they are all


- Consistent ?
- Correct ?
- Safe ?


Application to railways Rationale System Level Data are uploaded on embedded equipments for exploitation Database Any error may lead to an accident Software modelling System modelling **Data validation** Rules **B** mathematical B models **Event-B** models Data language XML CSV, Excel, Text **Data generation B** models Target: Cyclic, monolithic software Target: **Systems** No IT, no OOP Pro B Source code generated, Source code generated, Compliance mathematical demonstrations / scripts Animation, mathematical demonstrations / scripts **Counter-examples**

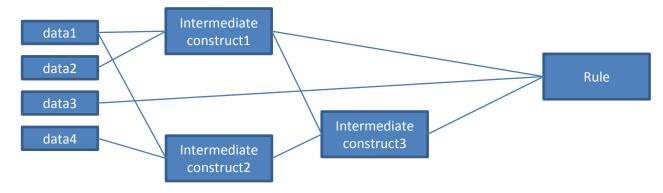
Application to railways

Data sets ≡ Data describing the topology of the track


- Addressing plan: networked equipments, IP addresses
- Scheme plan
- **System Data**: 101 tables, around 50,000 data for Mexico L12

Raw data as inputs

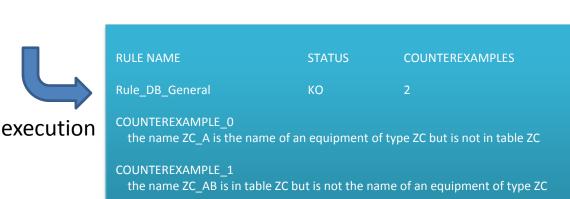
- csv files, every csv column is a **constant** in the B model



- data are not preprocessed: everything is modeled in B mathematical language
- Supported types: BOOL, INT , STRING, seq(INT), seq(STRING).

Application to railways

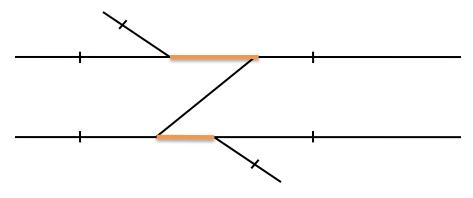
Properties ≡ Relationships between the data


- Properties expressed with B mathematical language and decorated with substitution-like syntax
- Use of intermediate constructs to factorize development

- Simple specification and detection of counter-examples

Application to railways **Rule name RULE DB GENERAL.3** COUNTEREXAMPLE the name %1 is the name of an equipment of type ZC but is not in table ZC ANY name1, ind2 Values to search for TYPF STRING, INT Sheet name Data name WHFRF ind2 : dom(ATC Equipments Cap!Name) & Conditions to fulfill ATC_Equipments_Cap!ATC_Equipment_Type(ind2) = "ZC" & ATC Equipments Cap!Name(ind2)=name1 **EXPECTED** If not fulfilled, #ind1.(ind1 : dom(ZCs Cap!Name) & name1=ZCs Cap!Name(ind1))counterexample is

END


A rule can be made of several sequential searches for counterexamples

found and error

message is displayed

Intermediate construct: Associate to each secondary detection device(sdd) and each consecutive points on the same track of the sdd the part of the track between the two points.

Application to railways

SDD_Point_Normal_Normal: dom(Secondary_Detection_Devices_Cap!ID) +-> (dom(Points_Cap!Name) * dom(Points_Cap!Name) +-> dom(Tracks_Cap!Name)*(INT*INT))

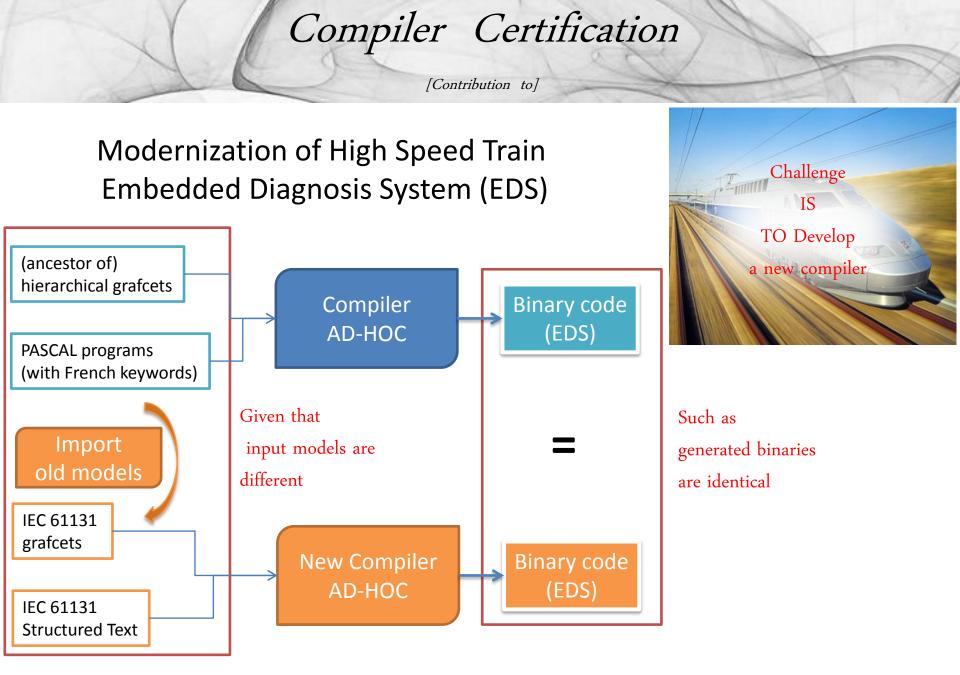
Application to railways

Rules to verify:

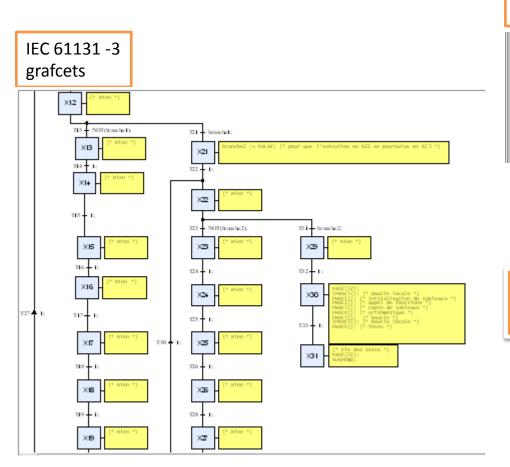
- 1.000 rules per project (generic / specific corpus)
- 450 rules formalized (rules added progressively as new projects are started)
- Target: 700 rules in 2013

Intermediate constructs:

- 150 (reused from one project to another)


Application to railways

Manual 30 days to verify 300 rules


VS

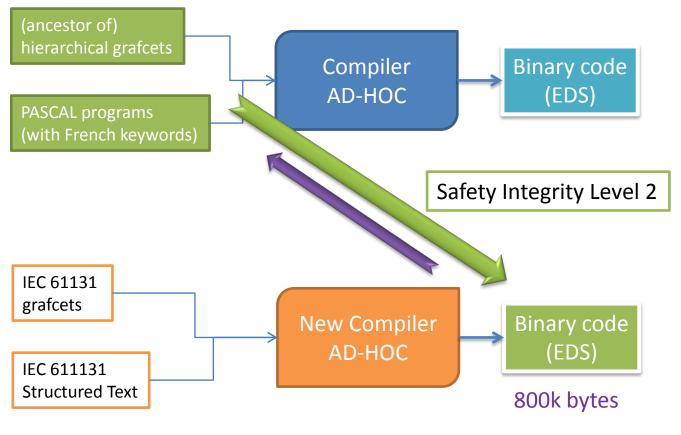
Data validation process few hours to verify 300 rules

Application to 20 projects for each major release

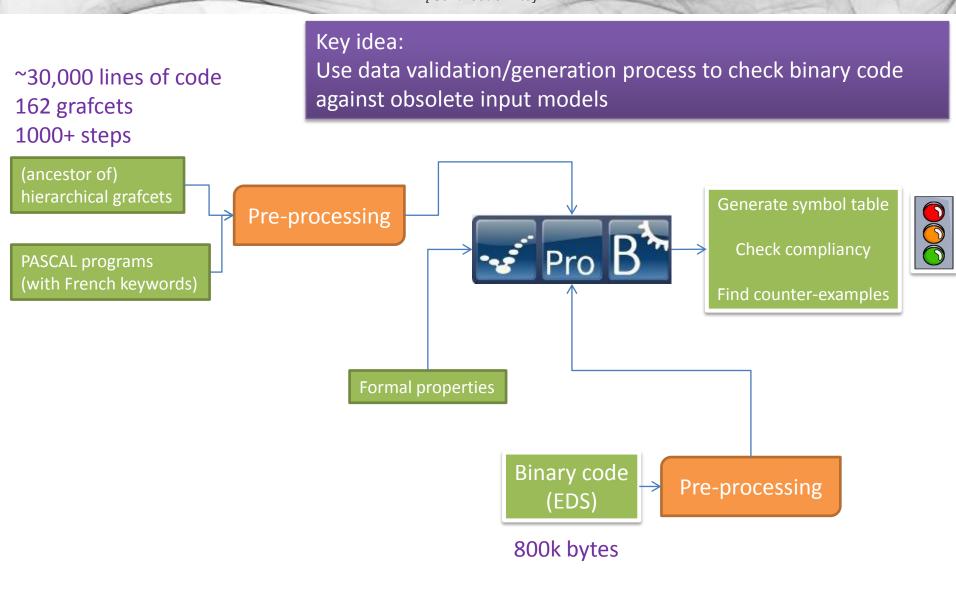
[Contribution to]

IEC 61131 -3 Structured Text

169 -	FUNCTION FI001
170	gI1 := gcI1;
171	gtI1[10] := gI1;
172	gtI1[13] := [3 (gcI1)];
173	gtI1[13] := gtI1[1113];
174	gI1 := (gI1 MOD 42) + 18 - (gI1 * 23) / gI1;
175	gI2 := -gI1;
176	gI2 := -gI2;
177	END FUNCTION


[0x001404] ADR_VL_VL_DR TRANSFERT 0x00d4 0x0000 0x82be [0x00140c] ADR_DR_VL_DR TRANSFERT 0x82be 0x0000 0x8306 [0x001414] ADR_VL_VL_DR TRANSFERT 0x82be 0x000d4 0x82f4 [0x00141c] ADR_VL_VL_DR TFR_TABLE 0x0003 0x8308 0x4004 [0x001424] ADR_DR_VL_DR MODULO 0x82be 0x002a 0x82ae [0x00142c] ADR_DR_VL_DR ADDITION 0x82ae 0x0012 0x82ae [0x001434] ADR_DR_VL_DR MULTIPLIE 0x82be 0x0017 0x82b0 [0x00143c] ADR_DR_VL_DR MULTIPLIE 0x82be 0x0017 0x82b0 [0x00143c] ADR_DR_DR_DR_DR DIVISE 0x82b0 0x82be 0x82b0 [0x001444] ADR_DR_DR_DR_DR SOUSTRAC 0x82ae 0x82b0 0x82be [0x00144c] ADR_DR_VL_DR SOUSTRAC 0x82be 0x0000 0x82c0 [0x001454] ADR_DR_VL_DR SOUSTRAC 0x82c0 0x0000 0x82c0 [0x00145c] RETOUR 0x00

[Contribution to]


Key idea: Use data validation/generation pr

~30,000 lines of code 162 grafcets 1000+ steps

Key idea: Use data validation/generation process to check binary code against obsolete input models

[Contribution to]

[Contribution to]

Key idea:

Use data validation/generation process to check binary code against obsolete input models

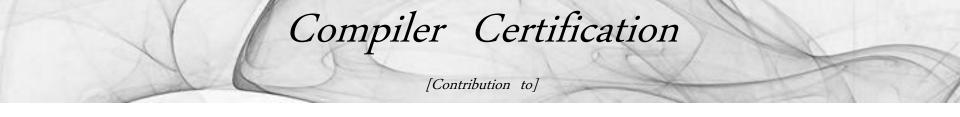
Formal properties

[Contribution to]

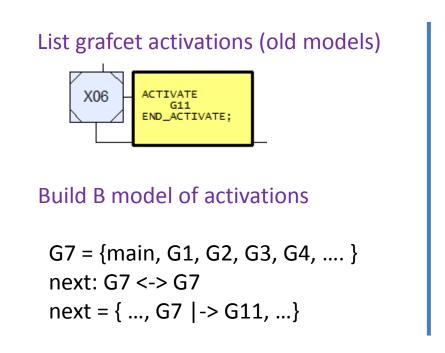
Key idea: Use data validation/generation process to check binary code against obsolete input models

~80 properties identified related to 1200 variables and code

- P01 No more dead code in the binary than in the input models
- PO2 RAM memory space usage in binary file should comply with memory access in input models Stackless intermediate results stored in specific memory area
- P03 Sub-grafcets called in the binary file should comply with sub-grafcets activated in input models


No symbol table available, so structure information should be recovered

 \rightarrow property verification is ordered in order to reuse data previously generated



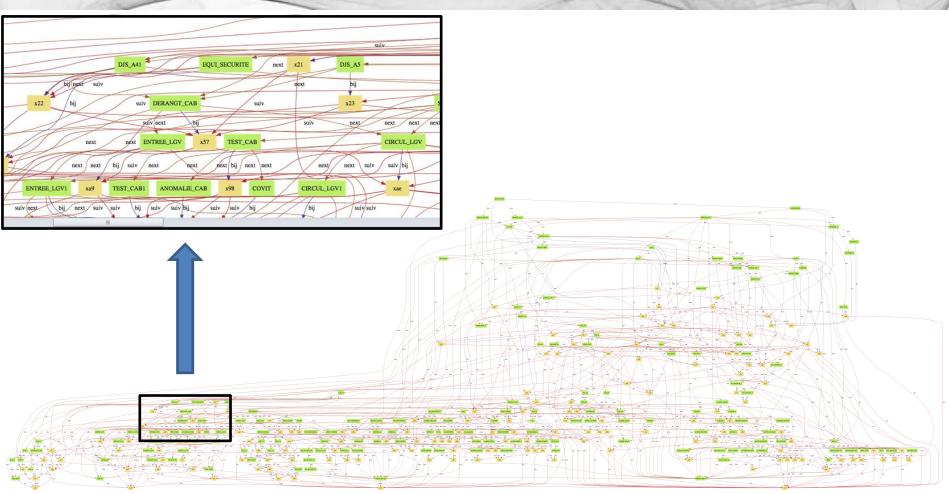
[Contribution to]

• P03 Sub-grafcets called in the binary file should comply with sub-grafcets activated in input models

• P03 Sub-grafcets called in the binary file should comply with sub-grafcets activated in input models

List grafcet activations (binary)

```
[0x00198c] LANCE_GRAF 0x15
```

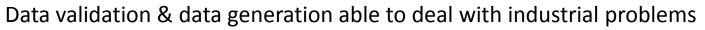

Build B model of activations

ADR = {0x01, 0x13, 0x15, ...} suiv: ADR <-> ADR suiv = { ... , 0x10 |-> 0x15, ...}

there exists a bijection bij that associates to a node of G7 a node of ADR such as children of both nodes match

bij: G7 >->> ADR &!xx.(xx: G7 => bij[next[{xx}]] = suiv[bij[{xx}]])

[Contribution to]


162! =

[Contribution to]

Modelling completed in 2 days

Complete verification performed in 2 minutes:

- Models and binary match
- Some errors found like:
 - infinite loop (G13 activates G23, G23 activates G13)
 - dead code (elements declared but never used)

Conclusion & perspectives

- Data validation time divided by 10 at least
- Automation slightly improves the level of confidence

Data validation & data generation able to deal with industrial problems

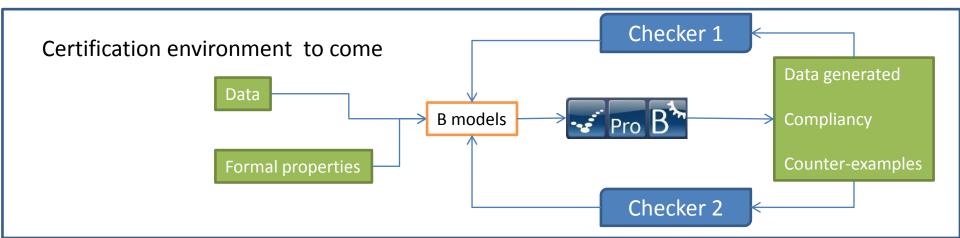
Conclusion & perspectives

- Data validation time divided by 10 at least
- Automation slightly improves the level of confidence

Technology is mature

- Several R&D projects to assess and improve tools and methods
- Daily production on worldwide applications not restricted to B
 - Proprietary tools
 - Atelier B 4.1 integrates data validation projects

Data validation & data generation able to deal with industrial problems


- Data validation time divided by 10 at least
- Automation slightly improves the level of confidence

Technology is mature

Several R&D projects to assess and improve tools and methods

- Daily production on worldwide applications not restricted to B applications
 - Proprietary tools
 - Atelier B 4.1 integrates data validation projects

Conclusion & perspectives

Thank you

for your attention

Lilian Burdy Thierry Lecomte (speaker)

Michael Leuschel