
System-level modelling with Event-B

B Dissemination Day, GRACE, Tokyo

Michael Butler
users.ecs.soton.ac.uk/mjb

www.event-b.org
www.deploy-project.eu

School of Electronics and Computer Science
University of Southampton, UK

Contents

• Motivation

• Event-B overview

• Rational design with Event-B:

– abstraction

– refinement

– proof and mechanical analysis

• Decomposition structures

• Take-home messages

System level

• Examples of systems:
– Train signalling system
– Mechanical press system
– Access control system
– Air traffic information system
– Electronic purse system
– Distributed database system
– Cruise control system
– …

• System level reasoning:
– Involves abstractions of overall system not just

software components

What’s wrong with the V model?

Preliminary design

Specification

Detailed design

Coding

Unit testing

Validation testing

Integration testing

Many errors are introduced early but detected
late – such errors are expensive to fix.

Why is it difficult to detect errors?

• Lack of precision

– ambiguities

– inconsistencies

• Too much complexity:

– complexity of requirements

– complexity of operating environment

– complexity of designs

Need for precise models/blueprints

• Precision from early stages with models
– Precise descriptions of intent
– Amenable to analysis by tools
– Identify and fix ambiguities and inconsistencies as

early as possible

• Mastering complexity
– Encourage abstraction
– Focus on what a system does
– Early focus onkey / critical features
– Incremental analysis and design

Formal Methods

• Mathematical techniques for formulation and analysis of
systems

• Formal methods facilitate:
– Clear specifications (contract)
– Rigorous validation and verification

Validation: does the contract specify the right system?
– answered informally

Verification: does the finished product satisfy the contract?
– can be answered formally

Early stage analysis

Architectural design

Specification

Detailed design

Coding

Unit testing

Validation testing

Integration testing

Verification

Verification

Verification

Validatio
n

Validatio
n

Validatio
n

Rapid prototyingversus modelling

• Rapid prototying: provides early stage feedback
on system functionality
– Plays an important role in getting user feedback

– and in understanding some design constraints

– But we will see that formal modelling and proof
provide a deep understanding that is hard to achieve
with rapid prototyping

• Advice: use any approach that improves design
process!

Event-B (Abrial)

• State-transition model (like ASM, B, VDM, Z)
– set theory as mathematical language

• Refinement (based on action systems by Back)
– data refinement

– one-to-many event refinement

– new events (stuttering steps)

• Proof method
– Refinement proof obligations (POs) generated from

models

– Automated and interactive provers for POs

Rational design, by example

• Example: access control system

• Example intended to give a feeling for:

– modelling language

– abstraction and refinement

– role of verification

Access control system

• Users are authorised to engage in activities
• User authorisation may be added or revoked
• Activities take place in rooms
• Users gain access to a room using a one-time

token provided they have authority to engage in
the room activities

• Tokens are issued by a central authority
• Tokens are time stamped
• A room gateway allows access with a token

provided the token is valid

Entity-relationship diagram

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEKEEPER

room

authorised

takeplace

holder

issuer

trust

location

read

manageauthorise
manage

guards

Entity-relationship diagram

USER ACTIVITY

ROOM

TOKEN

AUTHORITY

GATEKEEPER

room

authorised

takeplace

holder

issuer

trust

location

read

manageauthorise
manage

guards

This model is unnecessarily complex to specify
the main access control policy which concerns
users, rooms and activities

Simplify / abstract

USER ACTIVITY

ROOM

authorised

takeplace

Access control invariant:
if user u is in room r,
then u must be authorised to engaged in all activities that can
take place in r

location(u) = r ⇒ takeplace[r] ⊆ authorised[u]

Abstraction: focus on key entities in the problem domain

location

Enter a room

Enter ≙
when

grd1 : u ∈ User
grd2 : r ∈ Room
grd3 : takeplace[r] ⊆ authorised[u]

then
act1 : location(u) := r

end

Does this operation maintain the security invariant?

Remove authorisation

RemoveAuth(u,a) ≙
when

grd1 : u ∈ User
grd2 : a ∈ Activity
grd3 : u↦ a ∈ authorised

then

act1 : authorised := authorised ∖ { u↦ a }
end

Does this operation maintain the security invariant?

Counterexample from model checking
with ProB plug-in for Rodin

Failing proof with Rodin

Strengthen guard of RemAuth

Now refine

USER ACTIVITY

ROOM

location

authorised

takeplace

TOKEN
room

holder

Abstract condition on a user and room for entering
takeplace[r] ⊆ authorised[u]

is replaced by a condition on a token
t ∈ valid ∧ room(t) = r ∧ holder(t) = u

Failing refinement proof

Gluing invariant

USER ACTIVITY

ROOM

location

authorised

takeplace

TOKEN
room

holder

To ensure consistency of the refinement we need invariant:
t ∈ valid
⇒
takeplace [room(t)] ⊆ authorised[holder(t)]

Invariant enables PO discharge

But get new failing PO

Source of failing PO

Strengthen guard of refined RemAuth

Rational design – what, how, why

• What does it achieve?
if user u is in room r,

then u must be authorised to engaged in all activities that can take
place in r

• How does it work?
Check that a user has a valid token

• Why does it work?
For any valid token t, the holder of t must be authorised to
engage in all activities that can take place in that room

What, how, why written in B

• What does it achieve?
location(u) = r
⇒ takeplace[r] ⊆ authorised[u]

• How does it work?
t ∈ valid ∧ r = room(t) ∧ u = holder(t)

• Why does it work?
t ∈ valid
⇒
takeplace [room(t)] ⊆ authorised[holder(t)]

Decomposition

• Beneficial to model systems abstractly with little architectural
structure and large atomic steps
– e.g., file transfer, replicated database transaction

• Refinement and decomposition are used to add structure and
then separate elements of the structure

• Atomicity decomposition: Decomposing large atomic steps to
more fine-grained steps

• Model decomposition: Decomposing refined models to for
(semi-)independent refinement of sub-models

• Towards a method for decomposition

Simple file store example

sets FILE, PAGE, DATA

CONT = PAGE ↛ DATA

machine filestore
variables file, dsk
invariant

file FILE ∧
dsk file CONT

initialisation
file := { } || dsk := { }

events

CreateFile≙…

WriteFile ≙ // set contents of f to be c
anyf, cwhere
f∈ file
c∈ CONT
then
dsk(f) := c
end

ReadFile ≙ // return data in page p of f
anyf, p, d! where
f∈ file
p∈ dom(dsk(f))
d! = dsk(f)(p)
end

Refinement of file store

• Instead of writing entire contents of a file in one atomic step,
each page is written separately

machinefilestore2
refinesfilestore
variables file,dsk,writing,wbuf, sdsk

invariant

writing file
wbuf writing CONT
sdsk writing CONT // shadow disk

Breaking atomicity

• Abstract WriteFile is replaced by
– new events: StartWriteFile, WritePage,
– refining event: EndWriteFile

• Refined events for different files may interleave

• Non-interference is dealt with by treating new events as
refinements of skip
– new events must maintain gluing invariants

• But: refinement rule does not reflect the connection
between then new events and the abstract event

Event refinement diagrams

• Based on diagrammatic notation of
Jackson System Development (JSD)

• Graphical representation of how abstract atomic
events are refined

• We can exploit the hierarchical nature of JSD
diagrams to represent event refinement

• Adapt JSD notation for our needs

Event refinement diagram

• Diagram represents atomicity refinement explicitly
and

• Diagram specifies sequencing constraints on events

Write(f)

StartWrite(f) PageWrite(f,p) EndWrite(f)

all(p)

Hierarchical refinement

Write(f)

StartWrite(f) PageWrite(f,p) EndWrite(f)

all(p)

ByteWrite(f,p,b)

all(b)

StartPage(f,p) EndPage(f,p)

Replicated data base

• Abstract model

db object DATA

Commit = /* update a set of objects os */

anyos, update

where

os object∧

update (os DATA)(os DATA)

then

db := db <+ update(os⊲db)

end

Refinement by replicated database

sdbsite (object DATA)

Update is by two phase commit:

PreCommitfollowed by Commit

Global commit if all sitespre-commit

Global abort if at least one site aborts

Mutual Exclusion

Update(t)

Commit(t) Abort(t)

Update transaction will commit or abort but not both

At abstract level, update transaction is a
choice of 2 atomic events:

Event refinement diagram for Commit

Commit(t)

Start(t) PreCommit(t,s)
Global

Commit(t)
Local

Commit(t,s)

all sin SITEall sin SITE

Which event refines the abstract Commit?

Event refinement diagram for Commit

Commit(t)

Start(t) PreCommit(t,s)
Global

Commit(t)
Local

Commit(t,s)

all sin SITEall sin SITE

Decision to proceed is made by GlobalCommit

Abort(t)

Start(t) Refuse(t,s)
Global

Abort(t)
Local

Abort(t,s)

all sin
PreCommit[{t}]

some sin
SITE

Event refinement diagram for Abort

Protocol aborts transaction if some site aborts

Commit and abort affect object locking

• PreCommit(t,s) : locks all objects for
transaction t at site s

• LocalCommit(t,s) LocalAbort(t,s): release all
objects for transaction t at site s

Introducing messaging

Commit(t)

Start(t) PreCommit(t,s)

Broadcast
Start(t)

RecvStart(s,t)
Send

PreCommit(t,s)
Recv

PreCommit(t,s)

all s

all s

Where are we going?

• Start with system-level model of transaction, independent
of architecture/roles

• Then introduced stages of a transaction
– separation of normal and error behaviour

• Next we introduce explicit message send/receive
– this will allow us later to separate the requester/responder roles

• Hierarchical diagrams help us to identify and manage these
steps

Architectural/role decomposition

• Explicit message/receive allows to separate
requester/responder roles

• We do this by slicing the diagrams

Coordinator behaviour for database

Commit(t)

Start(t) PreCommit(t,s)

Broadcast
Start(t)

Recv
PreCommit(t,s)

all s

Non-coordinator behaviour for
database

Commit(t,s)

Start(t) PreCommit(t,s)

RecvStart(s,t)
Send

PreCommit(t,s)

Important Messages

• Formal modelling can be applied to systems
• Role of formal modelling:

– increase understanding
– decrease errors

• Role of verification:
– improve quality of models (consistency, invariants)

• Role of tools:
– make verification as automatic as possible, pin-pointing errors and even

suggesting improvements

• Methods needed:
– stronger guidelines for abstraction, refinement and decomposition

needed
– good structures help to ease their application

• In practice, refinement is not top-down!

