
C L E A R S Y

System Engineering

Automatic Refinement and Code Generation
- lessons learned -

Thierry Lecomte

thierry.lecomte@clearsy.com

(*) Inspired from llvm.org/docs/img/Debugging.gif

FM'2009 - FMICS

2

Plan

 Introduction

 Automatic Refinement

 Code generation

 Perspectives

FM'2009 - FMICS

3

Introduction

 B model is not end-product

 Hardly readable/understandable
even by its creator

 No processor so far able to natively execute B
models

Urbandictionnary.com

FM'2009 - FMICS

4

Introduction

 Hence some transformations are required:

 Animation

 (Automatic) Refinement

 “Code” Generation

 This presentation focuses on last two items

FM'2009 - FMICS

5

Automatic Refinement

 Refinement is for easing proof

 Why a designer would spend (lost?) time to help a
tool doing its job ?

 Expected outcome: time (money) saved when
applying the tool

 Errors in the tool are detected when proving the
generated models

FM'2009 - FMICS

6

Setting up methodology and tools (automatic refinement)

 Input: complete set-theoristic model of a software
 Output: refinements and implementations

 Refinement engine: applying transformation rules

FM'2009 - FMICS

7

Setting up methodology and tools (automatic refinement)

After

Constants

Functions to refine

Setters, getters

Before

FM'2009 - FMICS

8

Setting up methodology and tools (automatic refinement)

tdla := tdla u ob - mb - otd

Condensed
Implementation

Refinement
tree

FM'2009 - FMICS

9

Setting up methodology and tools (automatic refinement)

 Outcomes: development time divided by 2
 Safety Critical Software usually require twice more workload
 SCS developed with non SCS budget
 700 refinement rules written down
 Deployed worldwide for several metros

 Biggest implementation: Val de Roissy Shuttle
 Alarm Control Unit: 265 kloc B model (40 kloc handwritten), 186

kloc Ada code
 Section Automatic pilots: 67 kloc B model, 50 kloc Ada code

FM'2009 - FMICS

10

Automatic Refinement

 How is it practical ? (-> LIVE DEMO)

 How is it efficient ?

 Generated models are more decomposed

 Many small steps leading to easier proof

 For some constructions (abstract iterator),
interactive demonstration could be provided
automatically

FM'2009 - FMICS

11

Pattern matching in detail

Substitution
to refine

Matching rule

Matching getter

Refined substitution

FM'2009 - FMICS

12

Feedback

 Initial set of refinement rules is not sufficient

 Need to be extended to address your modelling and
expectations

 Initial set of rules is not bug free

 Detected by typechecking (syntax errors) and by proof

FM'2009 - FMICS

13

Code generation

 Several code generators in use: C, C++, Ada, HIA

 Incoming Ladder and VHDL

 Using different technologies (redundancy)

 Encoding (FIDARE),

 diversity (inverse mirror),

 specific hardware (coded secure processor)‏

 Almost each industrial project has its own translator

 The current situation is …..

FM'2009 - FMICS

14

FM'2009 - FMICS

15

Code generation

 Based on different tools to avoid common mode failure

 Type-checker, B-parser, B-compiler

FM'2009 - FMICS

16

Code generation

 Translators to be used in pair

FM'2009 - FMICS

17

C Code generation

 Safety critical standards recommend:

 (1) A limited use of pointers

 (2) No recursion

 (3) No dynamic memory allocation

 With instantiated machines, point (1) was not reachable

 Development of a translator based
on cocktail compiler compiler: ComenC

 C code more readable

 But discontinued support

FM'2009 - FMICS

18

Ladder Code Generation

 Transformation of a B model into a ladder code in
order to feed a PLC

 For S7 Simatic (Siemens)

 Generation of png files !

FM'2009 - FMICS

19

Modelling phase 1

ZonesConnexions

GlobalSecuritySys

ImplantationConnexion

DefectClosingPSD

ref

ref

ref

- define the properties expressing system safety

- demonstrate that any train + PSD system veryfing some properties is safe

- open train doors iff train is at the standstill and doors in front of PSD

- open PSD iff train at the standstill is present or in case of evacuation

- a train should not move if at least one PSD is not closed

E
N

V

FM'2009 - FMICS

20

Modelling phase 2

ZonesConnexions

GlobalSecuritySys

GlobalDR

GlobalDR2

ref

ref

ref

GlobalCop

GlobalCop1

PSD

COPPILOT

COPPILOT

PLCType0

PLCType1

PC
PSD

PLCType

ref

ref

decomp

decomp
decomp

decomp

FM'2009 - FMICS

21

Modelling phase 2

COPPILOT

ZonesConnexions

GlobalSecuritySys

GlobalDR

GlobalDR2

ref

ref

ref

GlobalCop

GlobalCop1

PSDCOPPILOT

PLCType0

PLCType1

PC
PSD

PLCType

ref

ref

decomp

decomp
decomp

decomp

FM'2009 - FMICS

22

Modelling phase 3

COPPILOT

State diagrams

Flow diagrams

LADDER code

FM'2009 - FMICS

23

Verifications

FM'2009 - FMICS

24

Traffic light management

s1,s2 <-- evol =
VAR t1,t2 IN

s1 <-- i1.fetat;
i1.fevol;
i2.fevol;
t1 <-- i1.fetat;
t2 <-- i2.fetat;
IF t1=rouge & t2=rouge THEN

IF s1=rouge THEN
i1.fvert

ELSE
i2.fvert

END
END;

s1<--i1.fetat;
s2<--i2.fetat

END

FM'2009 - FMICS

25

Feedback

 Applied several times for safety critical systems

 Typing Ladder programs using SIMATIC S7 PLC is
risky

 Envisaging to directly generate binary code

FM'2009 - FMICS

26

VHDL Code Generation (B4SYN)

 Not a 1-to-1 translation schema

 What is translated
 Variables

 Constants

 Events

 What is needed
 Invariants

 Properties

 Valuation for the constants

 List of synchronous events and outputs

 List of asynchronous events

 List of combinatorial events and outputs

FM'2009 - FMICS

27

B4Syn Translation schema

Model.sys

Model_rx.

ref

Model_rx.

b4syn

Model_rx.

ent.vhd

Model_rx.

rtl.vhd

Model_rx.

values

B4SYN

translator

VHDL

codeValuation file

Configuration file

Event-B model

FM'2009 - FMICS

28

Extra information

 Synchronous events: modelling computations performed on a
clock tick.
 The inputs are acquired

 Outputs are positioned

 Registers are updated

 Asynchronous events: modelling interrupted events
 Registers should be initialized

 cold reset, warm reset

 Combinatorial events: events triggered before the component
stabilizes.
 is necessary to check that the disjunction of their guards is true.

 Supported grammar:
[ASYNCHRONOUS | (SYNCHRONOUS ; ASYNCHRONOUS) | (SYNCHRONOUS ; COMBINATORIAL)]*

FM'2009 - FMICS

29

Extra information

 Circuit definition

 Synchronous outputs

 Combinatorial outputs (handled in a separate process)

 Clocks

 Sequencer variable

 Inputs

 Valuation information (sets, functions, relations, integers,
elements)

 Values used for driving the translation process

• S = a..b indicates that the set is a range of values from a to b

• S = (0..b)*BIT indicates that the set is a range of bits, and that
bit to bit operations are possible

 Predefined functions:

• NthBit = %(x,n).(x: (0..i)*BIT & n: 0..i | x(n))

FM'2009 - FMICS

30

VHDL types supported

 STD_LOGIC

 STD_LOGIC_VECTOR(x downto y)

 INTEGER

 Arrays of the previous types

FM'2009 - FMICS

31

Structure of the rtl file

 Process sample inputs

 Process registers reset

 Process output management

 Combinatorial events

FM'2009 - FMICS

32

Feedback

 Translator used with success on a microciruit

 Adequate generated VHDL models:

• Size (5k gates)

• Workload (even if different profiles)

• Able to be tested with product testbenches

 Translator probably lacking of generality

FM'2009 - FMICS

33

Generating Ada code from Event B model

 Application of aggregation rules to transform a set of
events into an algorithm

SELECT P & Q THEN R END

[]

SELECT P & not Q THEN S END

~>

SELECT P THEN

IF Q THEN R ELSE S END

END

Condition:

P & Q => [R] not P

P & Q => [S] not P

FM'2009 - FMICS

34

Generating Ada code from Event B model

SELECT P THEN R END

[]

SELECT Q THEN S END

~>

SELECT P THEN R;S END

Condition:

P => [R] Q

FM'2009 - FMICS

35

Generating Ada code from Event B model

 Obtained algorithm is not checkable with
B

 Applied on part of the Ariane 5 flight
software

 To obtain finally 80 lines of Ada,
comparable to the handwritten ones

 Around 20 000 events would be required
to replicate the branching structure of an
Automatic Train Pilot

http://fr.wikipedia.org/wiki/Fichier:Ariane_5.png

FM'2009 - FMICS

36

Semantics of B models

IF xx + yy > 255 THEN

xx := xx mod 2

END
C

Ada

VHDLLadder

Refined model

Would my modelling be
the same for a different
target formalism ?

FM'2009 - FMICS

37

Conclusion

 Path to cyclic software well explored

 Different approaches for event based models,
even not 1 to 1 translation

 Still lot to do

C L E A R S Y

System Engineering

Thank you for your attention

