Automatic Refinement and Code Generation
- lessons learned -

Thierry Lecomte

thierry.lecomte@clearsy.com

CLEAR
System Engineering

(*) Inspired from llvm.org/docs/img/Debugging.gif



Plan

m Introduction
® Automatic Refinement
m Code generation

m Perspectives

EEEEEEEEEEEE ERING FM'2009 - FMICS



Introduction

B model is not end-product

Hardly readable/understandable
even by its creator

double dutch

Totally alien to you, something you don't understand.

I don't understand this C++ stuff, it's all double dutch to me!

Urbandictionnary.com

No processor so far able to natively execute B

models

uuuuuuuuuuuuu FM'2009 - FMICS




Introduction

Hence some transformations are required:

Animation
(Automatic) Refinement

“Code” Generation

This presentation focuses on last two items

uuuuuuuuuuuuu FM'2009 - FMICS



Automatic Refinement

Refinement is for easing proof

Why a designer would spend (lost?) time to help a
tool doing its job ?

Expected outcome: time (money) saved when
applying the tool

Errors in the tool are detected when proving the
generated models

uuuuuuuuuuuuu FM'2009 - FMICS



Setting up methodology and tools (automatic refinement)

» Input: complete set-theoristic model of a software

® Output: refinements and implementations

e

Machine or refinement

\

Refinement
rules

M_iimp l

Implementation

M_r.ref l M1.mch l \
M1_i.imp l

J

= Refinement engine: applying transformation rules

RULE assign_a bool subset b o 11

RULE assign_a bool belongs b c l&

EEEFINES REFINES
@a = bool (b <: Ec—@d} Bz = bool(@k|-»Ed : @c*@e)
REFINEMENT BREFINEMENT
Bz = boocliik <: @c & @k /% @84 = [1) @z = bool(@k:@c & @d:@e)
END; END;
CLEAR

EEEEEEEEEEEEEEEEE

FM'2009 - FMICS



Setting up methodology and tools (automatic refinement)

/ Before \ After

block occu . .
block_occupancy configuration inputs hlock Bccupﬁnc? i configuration nputs
block_occupancy 1 block_occupancy_it
block_occcupancy 1 1 block_occupancy it i
Setters, getters / \
block occupancy 1 it block occupancy 2
block occupancy 1 it 1 block occupancy 2 i
Constants l

block_occupancy 3
block_occupancy 3 i

Functions to refine l
block occupancy 4

block_occupancy 4 1

block_occupancy 5
block_occupancy 3 i

CLEARSY
SYSTEM ENGINEERING FM'2009-FMICS




Setting up methodology and tools (automatic refinement)

IMPLEMENT (wg_boucle <-- initier iteration_t_block} ;
WHILE wg_kcoucle = TRUE DO
IMPLEMENT (wg_boucle , 1 1 <-- poursuiwvre_iteration_t_block) ;

/% 7tdla := tdla %/ ({1 1} /\ cb - mb - otd)? */
set_tdl_azlarm l{[par_im 0_1:=1_1]) =
[
BEGIN
f* 21_2 :=boolipar_in 0_1 : cb - mb - otd)? */
[par_cut_1_1:=1 2] <-- set_tdl_slarm 1 1{[par_in 1 l:=par_imn 0_11} =
[

Condensed

ob i { par_im_1_1} ;

I 1 ° 17 mb i { par_in 1 1} &
mp ementatlon 1 & := boocl{l 7 = FALSE) ;
1 3 := bool{l_5 = TRUE &
1 & = TRUE} ;
tdla = tdla U Ob - mb - Otd 1 8 =—— lire otdipar_in_1_1) ;
1 4 := bool{l_8 = FALSE) ;
par_ocut_1_1 := bool{(l_3 = TRUE &
1 4 = TRUE)
END
B 1
Refinement IF 1_2 = TRUE THEN
/% ?tdla := tdla \/ {par_im_0_1}7 */
tree set_tdl_alarm 1_2 ([par_in_1_l:=par in 0_11) =
[
BEGIN
tdla i { par_imn_1_1) := TRUE
Refinement rules END
4§ Bloc substitution 1

4 ({9 assign_a_unien_b_c.assign_a_union_b_c_1

4 @ set_tdl_alarm_1 : Guarded substitution END
5 (i) block.Re END
4 G set_tdl_alarm_1_1: Guarded substitution 1
a ) assign_a_bool_belongs_b_c.assign_a_bool_belongs_b_c 21 INVAERIAMNT

4 () assign_a_bool_prop_op_b_c.assign_a_bool_and_b_c 1

4 @ Semicolon wg_boucle = bool{t_block a traiter /= {}}) &

4 @ Semicalon t_block a_traiter %/ t_block traites = t_block &
4 (® assign_a bool_belongs_b_c.assign_a_bool_belongs_b_c 21 t_block a_traiter /% t_block traites = {] &
4 ) assign_a_bool_prop_op_b_cassign_a_bool_and b_c 1 tdla = tdlas0 %/ t_block traites /% ob - mb - otd
4 @ Semicolon S - -

4 G Semicolon
(i assign_a_bool_belongs_b_c.assign_s_boal_belongs_b_c_39
4 ) assign_a_bool_not_b.R1
4 & Semicelon
{9 assign_a_bool_belongs_b_c.assign_a_bool_belongs_b_c_39
iY assign_a_bool_eq_b_c.assign_a_bool_eq_b_c_1
& IMPLEMENT
a () assign_a_bool_not_b.R1
4 & Semicolon
WY assign_a_bool_belengs_b_c.assign_a_bool_belongs_b_c_40
i assign_a_bool_eq_b_c.assign_a_bool_eq_b_c_1

— & IMPLEMENT
4 @@ set_tdl_alarm_1_2 : Guarded substitution
E {9 assign_a_union_b_c.assign_a_union_b_c_2

SYSTEM ENGINEERITNG FM'2009'FMICS



Setting up methodology and tools (automatic refinement)

Outcomes: development time divided by 2

Safety Critical Software usually require twice more workload
SCS developed with non SCS budget

700 refinement rules written down

Deployed worldwide for several metros

» Biggest implementation: Val de Roissy Shuttle

Alarm Control Unit: 265 kloc B model (40 kloc handwritten), 186
kloc Ada code

Section Automatic pilots: 67 kloc B model, 50 kloc Ada code

FM'2009 - FMICS



Automatic Refinement

How is it practical ? (-> LIVE DEMO)

How is it efficient ?
Generated models are more decomposed

Many small steps leading to easier proof

For some constructions (abstract iterator),
interactive demonstration could be provided
automatically

10

CLEAR
SYSTEM ENGINEERING FM'2009 - EMICS



Pattern matching in detail

Hypothesis | Mode substitution | Moderule | Matching rules

Substitution
to refine 1 16 := booli{par in 1 1 : otd)
Matching rule
RULE assign a bool belongzx b o 40
E THES
@2 := bool{@b : @&c) Matching getter
e 11 td block) =
DECL_COPERATION(@d <—— G@e (@) | res <-— lire otd(p_block) =
- PRE
Bg p block : t block
THEN | THEN
@d := bool (@f : @c) res := bool(p block : otd)
END} END;
IMPLEMENTATION
Ea <—— [@e(Bb)
Refined substitution 1_18 <-- lire pctdipar_in_1_1) 11

CLEAR
SYSTEM ENGINEERING FM'2009'FMICS



Feedback

Initial set of refinement rules is not sufficient

Need to be extended to address your modelling and
expectations

Initial set of rules is not bug free
Detected by typechecking (syntax errors) and by proof

12

uuuuuuuuuuuuu FM'2009 - FMICS



Code generation

Several code generators in use: C, C++, Ada, HIA
Incoming Ladder and VHDL

Using different technologies (redundancy)
Encoding (FIDARE),
diversity (inverse mirror),
specific hardware (coded secure processor)

Almost each industrial project has its own translator

13

uuuuuuuuuuuuu FM'2009 - FMICS



Parser C

Arbre Syntaxique

BOBO B Compiler
Trad C++|| Trad C TPSC TRADADA

FIDARE

QOutils Cocktail

MIR-INV

tradADA PSC

RED ComenC

TALSTOM

Tradalstom

______




Code generation

Based on different tools to avoid common mode failure
Type-checker, B-parser, B-compiler

BOBO Srer Outils Cocktai

/\

tradADA PSC
RED

ComenC

Trad C++|| Trad C | | TPSC

15

EEEEEEEEEEEEEEEEE FM'2009 - FMICS



Code generation

Translators to be used in pair

Parser C

Arbre Syntaxique

Outils Cocktail

/\

FIDARE MIR-INV

BOBO B Compiler
Trad C++|| Trad C TPSC TRADADA

tradADA PSC
RED

ComenC

TALSTOM

EEEEEEEEEEEEEEEEE

f‘l"l
/
Tradalstom ,:‘/
Vi
: Py

16

FM'2009 - FMICS



C Code generation

Safety critical standards recommend:
(1) A limited use of pointers
(2) No recursion
(3) No dynamic memory allocation

With instantiated machines, point (1) was not reachable

Development of a translator based
on cocktail compiler compiler: ComenC

C code more readable

But discontinued support

uuuuuuuuuuuuu FM'2009 - FMICS



Ladder Code Generation

Transformation of a B model into a ladder code in
order to feed a PLC

Instance number num =~ —| CMP=I 4[IL[P:~I]

| | vall 4 -
Other input {_ v Output

parameters || parameter

L] .
=F Processing

for vall

For S7 Simatic (Siemens)
Generation of png files !

szszszszszszszszszszszszsz FM'2009 - FMICS



Modelling phase 1

ref
ref

ref

- define the properties expressing system safety
- demonstrate that any train + PSD system veryfing some properties is safe
- open train doors iff train is at the standstill and doors in front of PSD

- open PSD iff train at the standstill is present or in case of evacuation

- a train should not move if at least one PSD is not closed

19

CLEARSY
EEEEEEEEEEEEEEEEE FM'2009 - FMICS



Modelling phase 2

ref

ref

\decomp

20

CLEARSY

EEEEEEEEEEEEEEEEE

FM'2009 - FMICS



Modelling phase 2

CLEARC.L FM2009 - FMICS



Modelling phase 3

The abowve realises the function: 3 =3 AND (T OR Z)

coppiLoT]

22

CLEARSY
EEEEEEEEEEEEEEEEE FM'2009 - FMICS



Verifications

Statement of work

Animation .
Internal verification DOCU mentatlon
—* SpECification External verification
Froof
» Refinement

Froof

» Implementation

Validation Guide

External werfication

Manual code
LADDER

Safety demonstration

» Safety case

Verification of hypotheses

— Experiment

CLEAR

SYSTEM ENGINEERING

23

FM'2009 - FMICS



Repl

(o)

Traffic light management T =
LT
sl,s2 <-- evol =
VAR t1,t2 IN
sl <--il.fetat;
il.fevol; “H_
i2.fevol;
tl <-- il.fetat; FNH_
t2 <-- i2.fetat;
IF t1=rouge & t2=rouge THEN n:"| mU
IF sl=rouge THEN e 3 I [
ELSE =g
i2.fvert
END ]
END;

()
sl<--il.fetat; -
s2<--i2.fetat =

END
b
.zmn_ ‘
o — |

CLEARS

SYSTEM ENGINEERING

FM'2009 - FMICS




Feedback

Applied several times for safety critical systems

Typing Ladder programs using SIMATIC S7 PLC is
risky

Envisaging to directly generate binary code

25

uuuuuuuuuuuuu FM'2009 - FMICS



VHDL Code Generation (B4SYN)

Not a 1-to-1 translation schema

What is translated
Variables
Constants
Events

What is needed
Invariants
Properties
Valuation for the constants
List of synchronous events and outputs
List of asynchronous events
List of combinatorial events and outputs

26

uuuuuuuuuuuuu FM'2009 - FMICS



B4Syn Translation schema

Model . . ) )
bzsin_rx Configuration file
Model rx.
Model.sys Model_»
Model rx.
ref | 47
Model rx.
rtl.vhd
Event-B model I
Model rx. VHDL
values ) ) d
Valuation file code

27

CLEARSY
SYSTEM ENGINEERING FM'2009' FMICS



Extra information

Synchronous events: modelling computations performed on a
clock tick.

The inputs are acquired
Outputs are positioned
Registers are updated

Asynchronous events: modelling interrupted events
Registers should be initialized
cold reset, warm reset

Combinatorial events: events triggered before the component
stabilizes.

is necessary to check that the disjunction of their guards is true.

Supported grammar:

[ASYNCHRONOUS | (SYNCHRONOUS ; ASYNCHRONOUS) | (SYNCHRONOUS ; COMBINATORIAL)]* g

uuuuuuuuuuuuu FM'2009 - FMICS



Extra information

Circuit definition

Synchronous outputs

Combinatorial outputs (handled in a separate process)

Clocks

Sequencer variable

Inputs
Valuation information (sets, functions, relations, integers,
elements)

Values used for driving the translation process

e S = a..b indicates that the set is a range of values from a to b

e S = (0..b)*BIT indicates that the set is a range of bits, and that
bit to bit operations are possible

Predefined functions:
o NthBit = A(x,n).(xe (0..i)*BIT Ane 0..i | x(n))
29

uuuuuuuuuuuuu FM'2009 - FMICS



VHDL types supported

STD _LOGIC

STD _LOGIC _VECTOR(x downto y)
INTEGER

Arrays of the previous types

30

uuuuuuuuuuuuu FM'2009 - FMICS



Structure of the rtl file

Process sample inputs
Process registers reset
Process output management
Combinatorial events

31

uuuuuuuuuuuuu FM'2009 - FMICS



Feedback

Translator used with success on a microciruit

Adequate generated VHDL models:
e Size (5k gates)
e Workload (even if different profiles)
e Able to be tested with product testbenches

Translator probably lacking of generality

32

uuuuuuuuuuuuu FM'2009 - FMICS



Generating Ada code from Event B model

Application of aggregation rules to transform a set of

events into an algorithm

SELECT P A Q THEN R END
[
SELECT P A not Q THEN S END
~ >
SELECT P THEN

IF Q THEN R ELSE S END
END

Condition:
PAQ=>/[R]notP
PAQ=>/[S]notP

33

szszszszszszszszszszszszsz FM'2009 - FMICS



Generating Ada code from Event B model

SELECT P THEN R END

[] Condition:
SELECT Q THEN S END P=>[R]Q
~ >

SELECT P THEN R;S END

uuuuuuuuuuuuu FM'2009 - FMICS



Generating Ada code from Event B model

m Obtained algorithm is not checkable with
B

m Applied on part of the Ariane 5 flight
software

m To obtain finally 80 lines of Ada,
comparable to the handwritten ones

= Around 20 000 events would be required
to replicate the branching structure of an
Automatic Train Pilot

CLEARSY
EEEEEEEEEEEEEEEEE FM'2009 - FMICS


http://fr.wikipedia.org/wiki/Fichier:Ariane_5.png

Semantics of B models

IF xx + yy > 255 THEN > Refined model
XX := xx mod 2
END T -
Ada
Ladder VHDL Would my modelling be

the same for a different
target formalism ?

36

szszszszszszszszszszszszsz FM'2009 - FMICS



Conclusion

Path to cyclic software well explored

Different approaches for event based models,
even not 1 to 1 translation

Still lot to do

37

uuuuuuuuuuuuu FM'2009 - FMICS



Thank you for your attention

CLEARSY

System Engineering



