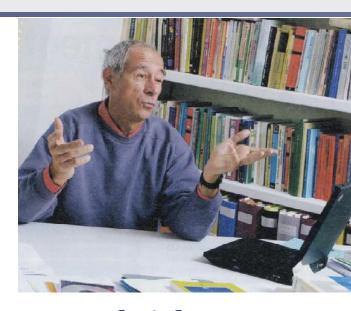
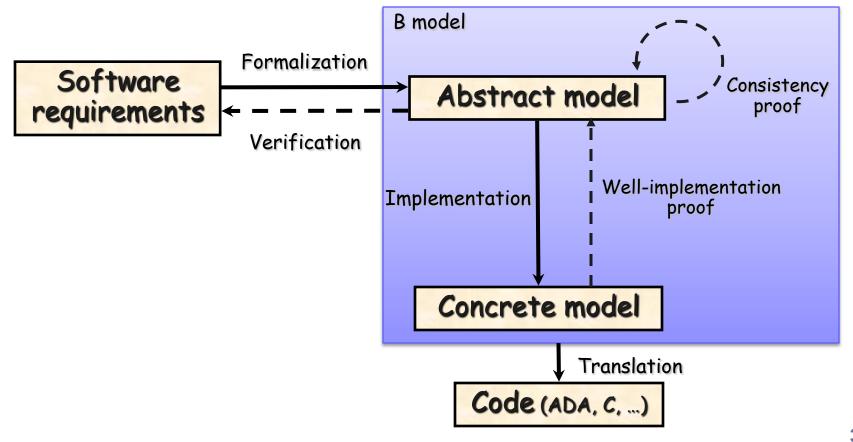
The Big Picture


Thierry Lecomte

thierry.lecomte@clearsy.com

A small history of B


- Born and matured in the 90's
- Based on scientific results
 (Dijkstra, Hoare, Jones, Morgan, Jifeng)
- Features:
 - Abstract specification
 - Refinement
 - Implementable models proved to comply with specifications
- First tool:
 - Developped by Alstom (Mejia)
 - Aimed at safety critical software
 - Translation of models in Ada

Abrial, J.R.
Inventor of the B method

Intrinsics

Yet Another Formal Method

- It all started with a failure:
 - Metro Line D in Lyon (initiated in 1979)
 - The line is automated during the development of infrastructures
 - Difficulties to set up a proper Automatic Pilot (SACEM): budget, planning (completed in 1992)
 - RATP decided to go for B, for the first fully automated metro in Paris

B into industrial existence

Support

Prototype tool strengthened through a 3M€ programme (RATP, French Railways, INRETS) over 5 years

- Automatic refinement to come
- Released in dec. 1998

- But turned out to be a real success:
 - 86 k loc software
 - still in v1.0 today, no bug detected so far

Some implementations (B)

Metro L1 **Paris**

To come:

- Istanbul
- Lyon
- New York (Flushing)

SHUTTLE ROISSY AIRPORT Paris

Metro L2 L3 Sao Paulo

Metro L **New York**

Metro L9

Seoul

Metro L3 **Paris**

Metro Airport Express Hong Kong

Metro **Madrid**

Metro

Mexico

Metro L9 Barcelona

Metro L2 Budapest

Metro **Toronto**

Metro L10 Beijing

Metro **Circle Line Singapore**

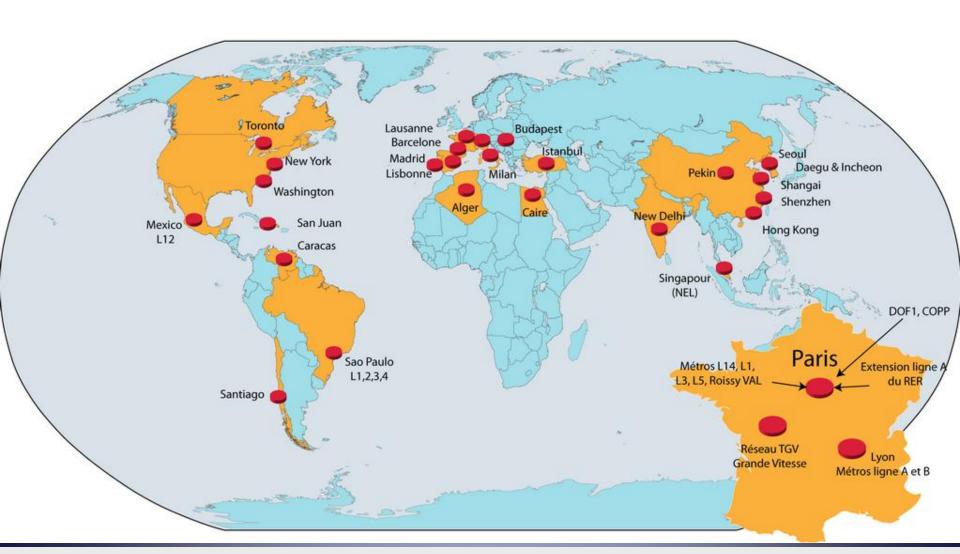
Metro San Juan

Metro Lausanne

Metro L1 L2 Malaga

Metro L5 Milano 2010

Metro Delhi



1990 2000

KVB 6000 trains **France**

Current picture: « B inside » metros

B for systems: the reasons

- 100% proved software is not a guaranty per se
 - Even if METEOR ATP is still in v1.0 in 2010
 - Ex: ATP reverse-engineered, from existing wired-logic systems to PLC
 - Not able to stop precisely at station
 - Software 100% proved but its specification was not the one that could make the train stopping
- METEOR a success because lot of energy spent at the system level

Event-B was born with the new century

- Building models for systems instead of software
- With events instead of operations/methods
- With one strong objective: to provide a system-level justification for a software specification
- Time for experimenting and researching

[Foundation papers:]

- J.R. Abrial, « *Extending B without changing it »*, 1996
- J.-R. Abrial and L. Mussat, "Introducing Dynamic Constraints in B," 1998

Some experimentations

Automotive:

Diagnosis (Peugeot)

Contactless keycard (Renault)

Banking:

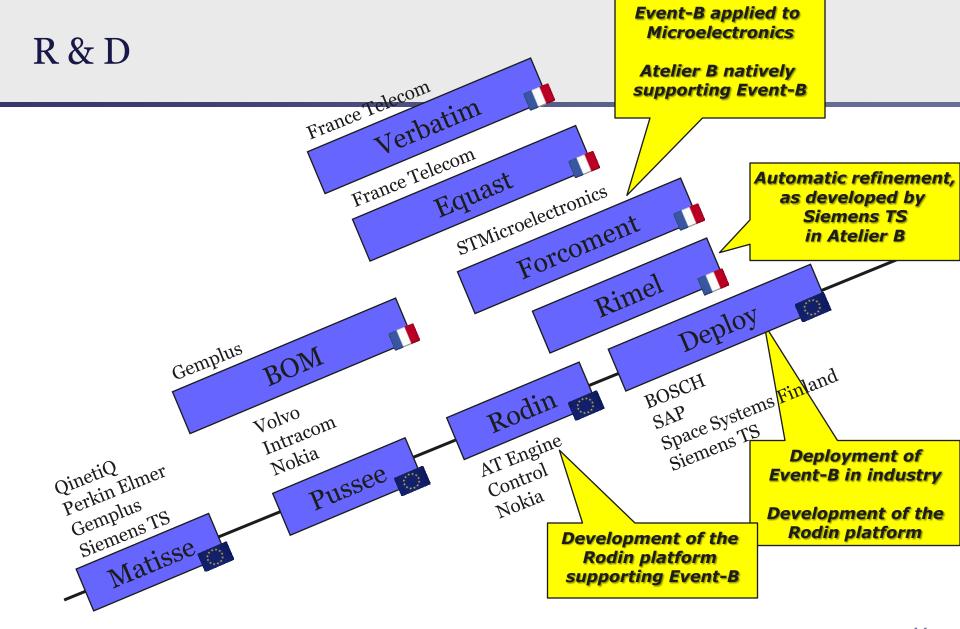
Reconciliation (Société Générale)

Space:

Ariane 5 flight software (EADS)

Microelectronics

Smartcard (STMicroelectronics)


Nuclear

Control System Design (EDF)

Industry

Pneumatic Press (CNAM)

Some implementations (Event-B)

Platform Screen Doors
Demonstrator
L13
Paris

PSD L1 Paris

Platform Screen Doors L13 Paris

L13 Automatic Gap Filler Paris

1998 2000 2002 2004 2006 2008 201012

Some implementations (microelectronics)

AT90SC12872RCFT

Low-power, high-performance, 8-/16-bit secure cryptocontroller with 128 Kbytes ROM and 72 Kbytes EEPROM. Security Features: OTP (One Time Programmable) EEPROM area, RNG (Random Number Generator), "out of bounds" detectors, side channel attack countermeasures, Hardware DES/TDES, 32-bit Cryptographic Accelerator, CRC, ISO 14443 Type B contactless interface and ISO 7816 contact interface, Common Criteria EAL5+ and EMVCo Certifications.

Secure Secure microcontroler microcontroler ST19NA18 ST23YR80 ST19NT66A SA23YR80 EAL5+ EAL5+ ST

Secure microcontrolers ATS90SC6404 ATS90SC12872

EAL5+ Atmel

Secure microcontroler ST23YL80 ST23YL18 EAL5+ ST

Secure microcontroler ST19WR08 ST19WR66 ST19NR66

microcontrolers ATS90SC12872R ATS90SC12836R EAL5+ **Atmel**

Secure

EAL5+ ST **Microcircuits**

> ST19WP ST19WL EAL5+ ST

Secure microcontrolers AT90SC20818 AT90SC13612 AT90SC24036

ST

Microcircuit ST22L128 EAL5+

ST

microcontrolers ATS90SC6404A ATS90SC12872A EAL5+

Atmel

Secure

EAL5+ **Atmel**

Assurance Level EAL5+ (Augmented). The formal recognition will now enable 3G network operators to extend their secure mobile services with M-commerce and digital signature applications, and will provide new opportunities in banking and ID

1998 2000 2002 2004 2006 2008 201013

market segments.

STMicroelectronics announced that the established ST22L128 32-bit secure

microcontroller has received 'Common Criteria' security certification at Evaluation

C LEAR S Y

System Engineering