

Version 4.3.1
Date of diffusion : February 2016

The Atelier B 4.3.1 is a Maintenance Edition version, which access is restricted to Atelier B 4

maintenance contract holders (corrective maintenance, anticipated access to new features/tools).

New Functionalities / Characteristics:

Atelier B 4.3.0 has been released on February 18th, 2016

This version fixes 27 bugs and 2 improvements are included:

 Checking of coding rules inside B models.

 Integration of ProB model-checker inside the interactive prover interface

B coding rule checking tool

A new module which allows the user to perform coding rule checking on B models has been

developed1.

It consists of one executable called « bcrc » (standing for « B coding rule checker ») which is present

in AtelierB installation directory. It is launched through a dedicated GUI which can be opened with a

menu entry. The « bcrc » executable can also be launched in command line if needed.

Configuring the rule checking

Checking coding rules in the AtelierB GUI is a component level action, an entry in « Component »

menu has been added. This action may be performed on one or several components at a time. Results

of rule checking on several components will be gathered.

The tool is based on syntactical and semantical analyzers provided in AtelierB, so it should be

launched on components which can be successfully type-checked. If it is used on some incorrect

components, type-check errors will be displayed in the “Error” view, but the coding rule checking will

not be performed on these components.

Selecting « Check coding rules »
action pops up a configuration
window which shows the rules that
can be verified.

Double-clicking on a rule in one of
the two top frames of the window
displays the rule parameters.

The user can then modify parameter
values. For parameters accepting

several values among a finite set, a
list of different possible values is

displayed, and the text field shows
by its colorization if current value is
correct.

The GUI contains also two check boxes used to specify how results of coding rule checking must be

shown. These results can be either displayed in the “Error” view of AtelierB main GUI, or written in

an output CSV file.

All rules accept a parameter called “REPORT_NAME” which is used to modify the name the rule will

be described with if the user chose to log coding rule violations in a file.

Below is an example of setting a simple string parameter. In this case this is the suffix that

implementation names must end with.

1 With support of Alstom

And then we present an example of a multiple value parameter, here the arithmetic operators that

are allowed in implementations

Below table describes all rules provided by the tool, as their identifier inside the GUI.

Provided rules

Rule Description
Refinement suffix

(REFINEMENT_SUFFIX rule)
This rule accept the string parameter

named “SUFFIX”. Its default value is

“_r”.

The rule checks that the name of

refinement components (beginning with

REFINEMENT keyword) ends with the suffix

chosen by user.
Implementation suffix

(IMPLEMENTATION_SUFFIX rule)
This rule accepts the string parameter

named “SUFFIX”. Its default value is

“_i”.

The rule checks that the name of

implementation components ends with the

suffix chosen by user.
Type prefix

(TYPE_PREFIX rule)
This rule accepts the string parameter

named “PREFIX”. Its default value is

“T_”.

The rule checks that identifiers of

elements declared in component SETS

clauses start with the prefix chosen by

user.
Scalar constant prefix

(SCALAR_PREFIX rule)

This rule accepts the string parameter

named “PREFIX”. Its default value is

“c_”.

The rule checks that identifiers of

constants declared in ABSTRACT_CONSTANTS

or CONCRETE_CONSTANTS with a type

included in INTEGER start with the prefix

chosen by user.

Enumerated value prefix

(ENUMERATED_PREFIX rule)

This rule accepts the string parameter

named “PREFIX”. Its default value is

“e_”.

The rule checks that identifier of

enumerated values declared in SETS

clauses of components start with the

prefix chosen by user.

Authorized arithmetic operators

(ALLOWED_OPERATORS rule)

This rule accepts the multiple value

parameter named “ACCEPT”.

Its value is a list of arithmetic

operators among :

 ‘plus’

 ‘minus’ : susbtraction

 ‘times’ : multiplication

 ‘divides’ : integer division

 ‘mod’ : modulo

 ‘power’

 ‘uminus’ : Unary minus

The rule checks that only arithmetic

operators chosen by user in the list are

present in implementations.

The default value for the « ACCEPT » list

is « plus ;minus ;times ;divides ».

Authorized substitutions

(ALLOWED_SUBSTITUTION rule)

This rule accepts the multiple value

parameter named “FORBIDDEN”.

Its value is a list of substitution types

among:

 ‘begin’

 ‘skip’

 ‘becomes_equal’

 ‘becomes_such_that’

 ‘assert’

 ‘if’

 ‘case’

 ‘var’

 ‘while’

The rule checks that substitutions of the

list do not appear in implementations

(only in code parts of OPERATIONS

clause).

By default FORBIDDEN parameter is empty.

Parameter present twice in operation

calls

(INPUT_OUTPUT_PARAMS rule)

A parameter cannot be used twice in an

operation call.

Local variable typing

(LOCAL_TYPING rule)

Variable declared in VAR IN substitutions

must be typed at the beginning in

« becomes such that » substitutions.

Displaying the results

Results of this checking functionality can be displayed as errors in the main « Error » view of AtelierB,

so that associated locations in the model can be reached by the user in order to directly write a

correction. This is done by checking the suitable box in the configuration pop-up. Violations of coding

rules are displayed in this view with criticality «Warning ».

Below example shows results of a coding rule verification, including the rules

INPUT_OUTPUT_PARAMS (parameters must not be present twice in operation calls) and

ALLOWED_SUBSTITUTION (only allowed substitutions can be present in implementations) configured

to forbid IF substitution – with value “if” for parameter FORBIDDEN.

User can also choose to write the violations of coding rules in an output CSV file by checking the

suitable box in the GUI. In this case only real typing or syntax errors provided by B compiler during

analysis of components to check are displayed in the main view.

Extensibility

New rules will be included in the tool, depending on new needs defined by users

Integration of ProB model-checker in the interactive prover

This new version provides a way for the user to launch the ProB model-checker in the interactive

prover as an interactive command which can be used inside a proof.

For this command to be used, ProB must be installed on the computer, and the resource

ATB*PR*ProB_Path in AtelierB resource file must contain the path to procli executable. If not, the

user will get a message « The Prob_Path resource is not set ».

This example shows how to set the resource in a B project created with Windows version of AtelierB.

The name of the new interactive proof command is prob, and it has two different syntaxes.

Command Description
prob(n) Launches ProB on the current goal.

The parameter n is similar to the one in
pp(rp.n), here the machine given to ProB as

input is built using hypothesis provided by rp.n

prob(n|t) Similar to prob(n) but limits the running time to
t seconds

Using this new command actually generates a machine containing the goal as an assertion. If there

are some hypothesis H coming from the rp.n when prob(n) is used to prove the goal G, they are

also written in the assertions clause of this machine so that it will contain H => G. Predicate needed

for typing are written in the PROPERTIES clause of this machine.

Then ProB is called with this temporary machine, in the mode which searches for counter examples

for ASSERTIONS clause content. Then 3 cases may occur:

 ProB can check the exhaustive set of values for the variables contained in the formula H

=> G and no counter example is found: current proof branch is proved

 ProB finds a counter example for the temporary machine assertion: the command fails

to prove the branch, a notification is written in Message view of the GUI

 ProB cannot process the exhaustive set of value for the variables of the assertion clause:

the command fails to prove current branch

