Version 4.4.2

Maintenance Edition
Date of diffusion : January 11*", 2017

ATELIER

The Atelier B is available in two versions:

e The Community Edition, usable by everyone without any restriction. This version is not
maintained.

e The Maintenance Edition, access restricted to Atelier B 4 maintenance contract holders
(corrective maintenance, anticipated access to new features/tools). Some features are specific
to this version (Ada, HIA and C++ code generators, mathematical rules proof tool.

Atelier B4.2.1 Atelier B 4.4.2

Functionality Community Maintenance
Edition Edition

Integrated Development Environment
Support of B Language Project
Support of Event-B Language Project
Support of Data Validation Project
Editor of B and Event-B Models
Automatic Refiner

Type Checker

Proof Obligations Generator
Automatic Prover

Interactive Prover

Predicate Prover

C Translator C4B

Ada Translator (MacOS, Linux)

High Integrity Ada Translator (MacOS, Linux)
C++ Translator (MacOS, Linux)
Mathematical Rule Validator Tool

SNISEEAESSSNESNSS

SNISEKESNSEANASSNSSSEAESNSS

New Functionalities / Characteristics:
Maintenance Edition Atelier B 4.4.2 has been released on December 16th, 2016.
This version fixes 45 bugs and 3 improvements are included:

e Proof obligations displayed in the model editor.

e A new proof command at for Apply Tactic.

e A configurable timeout for the pp family proof commands.
e New functionalities for the Proof Rules Validator.

Proof Obligations Displayed in the Model Editor

A new functionality has been developed in the editor in order to display the proof obligations in the
file being edited.

This functionality has been added for the purpose of:

e Displaying the proof obligations of the component being edited.
e Displaying the proof status of the component being edited.

Enabling the Functionality

This functionality is disabled by default. To activate it, please click on the menu “Atelier B”, then on
“Preferences”, then on the tab “Internal Editor”. In the tab, search the section “Proof information”
then check the box “Display proof information in the editor”.

| IupDULLIN Gl apial view TR e T T SN [SER I
£ Preferences ? X
Main window Projects ~ Mew components Internal Editor Internal Editor appearence Installaton Graphics

=)
Code verification

Perform semantic analysis of components
[Perform B0 Check on software components

Proofinformation (new POG is required)
Display proof information in the editor
[[] Generate POs when opening a file I}
[Generate POs after file saving

|:| Force BXML generation when generating POs

[Launch Force 0 after PO generation in the editor

Spell-Checking
Spell-check comments

Default Language |fr_FR ‘ Choose. ..

[riue TSTeT syl ‘
M
1

g Location Component

Finally, you can check the other boxes of the section for choosing when will be launched automatically
the generation of proof obligations and the force 0.

It should be noted that this functionality only works with the new proof obligation generator.
Effect in the Editor
If the proof obligations have been generated, the editor will be enhanced with new features.

e A vertical bar to the left displaying for each line the proof status.
e A vertical bar to the right displaying the proof status of the file.

POs online 8 X mod_2_iimp

CONCRETE_VARIABLES
T_stored_input,
filtered input

filtered input : BOOL &
T stored_input : NAT &
(1 <= T_stored input => TRUE : stored input [{cycle - c FILTERING N5_CYCLE +
T_stored_input}]) &
| TRUE /: stored imput [cycle - ¢ FILTERING NB CYCLE + T_stored input + 1..cycle]
INITIALISATION
T_stored_input :
filtered imput :
OPERATIONS
filter_input =
BEGIN
filtersd input := bool(T_stored input >= 1)
END;

0;
= PO FALSE

store_input =
VAR
11
™
skip;
BEGIN
1 1 <-- get_input;
IF T_stored_input >= 1 THEN
T stored input := T_stored input — 1
END:
IF 1_1 = TRUE THEN
T stored_input := c_FILTERING NB_CYCLE

Moreover, a click on one of the lines of the left bar displays the proof obligations linked to this line.
By selecting one of these proof obligations, all lines linked to this proof obligation will be highlighted.

POs on line 9 of mod_2_j 8 x| mod_2iimp
B B TMPLEMENTATION @
nitialisation. N
tialisation2 mod 2 %

" - REFINES

itizlisation 3 od 2 ¢

store_input. smEs T

store_input.2 mod 1,

store_input.3 etx

store_input-4 CONCRETE_VARIABLES

istore_input,5. T_stored input,

store_input.é filtered input

store_input.7 INVARIANT

store_input.8 filtersd input : BOOL &

store_inputd T_storsd_input : NAT &

store_input.10 (1 <= T_stored input => TRUE : stored input [{cycle - c FILTERING NB CYCLE +

filter_input.1 T_stored input}]) &

TRUE /: storsd_input [cycle - ¢_FILTERING_NB_CYCLE + T_stored_input + 1..cycle]
INITIALISATION
T_stored_input :
filtered input :
OPERATIONS
filter input =
BEGIN
filtered input := bool(T_stored input >= 1)
END;

o;
FALSE

Selected PO mod_2_i.store_nput.5 B X

store input =
VAR
11
N
skip:
BEGIN
11 < get_inmput:
IF T stored input >= 1 THEN

T_stored input := T_stored input — 1
END;
IF 1 1 - TRUE THEN

v T_stored_input := c_FILTERING NB_CYCLE

Added a Configurable Timeout for the pp Family Proof Commands

In the interactive prover, it is now possible to choose the timeout of commands of the pp family.

In the example below, the timeout of the command ppo is set to 25 seconds.

AO000DWOOL YWa L BE AHEHOOEEEGE® B ©E© =k W

Proof & x
~ Force(0)
pplrp.023)
MNext

A New Proof Command at for Apply Tactic

The interactive prover now has a new proof command at (for Apply Tactic). This command has a
single parameter which is the index of one of the rules of the theory User_Tactic. Executing this
command applies the corresponding rule.

In order to define your own tactics, you can open the PatchProver of your project and add your
tactics in the theory User_Tactic.

PatchProver

1- THEORY User Tactic IS

2 dd(0) & pp(rp.0 | 30):
3 dd{1l) & ppi{rp.l1 | 120)
4 END
5

In order to use for example the first tactic, simply run the command at(1) in the interactive prover.

¥ Force(0)
v dd(0)
ppirp.0 | 30)

M e
NENT

Situation & X

[] show only unproved POs

| PCs recently proved - |

Al POs v

> {9 Initialisation
N 9 store_input
@ ro
& pro2
& pro3
& Po4
& pros
© Pos
& po7
& pos

e ro9

o ﬁ PO10) at (1)

New functionalities for the Proof Rules Validator

Various functionalities have been added to the Proof Rule Validator in order accelerate the time that
this activity can take.

In the design mode, it is possible to automatically merge the name and the demonstration of all
identical rules with different names.

£ Rules Prover - Atelier B
File Edit View Rule Tools Help

w U @ @ \[[] Search for other rules with conflicting names (auto)

Rules Search for all identical rules with different names 8 X
- - Search for all rules with conflicting names -
View : | All rules 'J
- Merge all identical rules with different names.

v Loaded Files Merge all identical rules with same names h
v P machine.pmrr

2 Remove all unused theories
v W User_Rules

O User R Invalidate rules with list pattern
O User_R. rroveu ey reor
v @ machine_ipmm 2/2 072
v @& User_Rules 2/2 0/2
@ User_Rules.1 Proved (PP) Not Verified
® User_Rules.2 Invalid Not Verified
Rule Base files 0/0 0/0

In the design mode, a report listing the rules that are not proved automatically and without
demonstration can be exported in the CSV format.

£ Rules Prover - Atelier B
File Edit View Rule Tools Help

Open... Ctrl+O
Close & x
Save Ctrl+S E =
Save all Ctrl+Shift+S | Al
Generate HTML Validation Report...
Generate Raw Text Validation Report...
Generate the report which list unproven rules by PP without proof
Quit Ctrl+Q
EITIECIIITE NPTy e ure
v & User_Rules 272 0/2
 User_Rules.1 Proved (PP) Not Verified
O User_Rules.2 Invalid Not Verified
Rule Base files 0/0 0/0
In the design mode, it is possible to remove all the unused theories.
£ Rules Prover - Atelier B
File Edit View Rule Tools Help
u U g @ \[] Search for other rules with conflicting names (auto)
Rules Search for all identical rules with different names 8 X

_ Search for all rules with conflicting names
View : | All rules | b

Name Merge all identical rules with different names
v Loaded Files Merge all identical rules with same names
v ® machine.pmm e el
v & User_Rules —— - l}
O User R Invalidate rules with list pattern
@ User R Froveu rrg ot vereu
v machine_ipmm 2/2 0/2
v & User_Rules 2/2 0/2
O User_Rules.1 Proved (PP) Not Verified
O User_Rules.2 Invalid Not Verified
Rule Base files 0/0 0/0

In the verification mode, the automatically proved rules can be marked as verified.

£ Rules Prover - Atelier B
File Edit View Rule Tools Help

QO 00 O w7

& X
View : | All rules b
All ules]
Name Proved Verified
v Loaded Filer A ara
v I® mac Expand tree
v e
| Prove with OPR
J
v I8 mac Mark as verified and wrong the invalid rules
v
I Save Ctrl+S
| Close
Rule Base f.
In the verification mode, it is possible to mark as verified but wrong all the invalid rules.
£ Rules Prover - Atelier B
File Edit View Rule Tools Help
OO 00 O miz F]
Rules & x
View : | All rules v
|All rules 4
Name Proved Verified
v Loaded ,ﬁﬁ 7 niA
v I machine.p Expand tree
v W UserRi

IO Use Prove with OPR

IO Use Mark as verified the rules proved with OPR
v | machine_i.

v N UserRi
10 Use Save Ctrl+S
0 Use /cioce
Rule Base files

In the verification mode, the shortcut Ctrl+N will mark a rule as verified and will skip to the next
rule.

