

Version 4.2
Date of diffusion : December 2014

Atelier B 4.2 is available in two versions:

 Community Edition, usable by everyone without any restriction. This version is not

maintained.

 Maintenance Edition, access restricted to Atelier B 4 maintenance contract holders (corrective

maintenance, anticipated access to new features/tools). Some features are specific to this

version (Ada, HIA and C++ code generators, mathematical rules proof tool.

Fonctionality
Atelier B 4.2
Community

Edition

Atelier B 4.2
Maintenance

Edition

Integrated Development Environment
Support of B Language Project
Support of Event-B Language Project
Support of Data Validation Project
Editor of B and Event-B Models
Automatic Refiner
Type Checker
Proof Obligations Generator
Automatic Prover
Interactive Prover
Predicate Prover
C Translator C4B
Ada Translator (MacOS, Linux)
High Integrity Ada Translator (MacOS, Linux)
C++ Translator (MacOS, Linux)
Mathematical Rule Validator Tool

New Functionalities / Characteristics:

Atelier B 4.2 (Community Edition and Maintenance Edition) has been released on December 19, 2014.

This release brings 151 bug corrections and 47 improvements.

Among these features, we can mention:

 Full 64-bit support

 A new traceable, generic, proof obligation generator

 A better integration of real and floating point numbers

 Accessors added to BART in order to solve refinement conflicts

 Boolean and integer translation fine-tuning in C4B code generator

 Addition of a proof server, in order to speed up proof

Generic Proof Obligation Generator

A new proof obligation generator (POG) has been developed1 in order to bring new functionalities:

 Proof obligation traceability, through an integrated GUI associating model and proof;

 Simplified proof obligations par by modifying formulas normalisation principles;

 Ability to define and add your own proof obligations, through xsl files defining theoretical proof

obligations for B method, Event-B and well-definedness.

This new proof obligation generator produces about the
same number of proof obligations, while their content may
vary. It is highly probable that a project proved with a
previous version of Atelier B would not be completely

proved (automatically or replaying saved demonstrations)
with Atelier B 4.2. The new proof obligation generator is
selected by default when creating a project (New
Generation). To use the previous proof obligation
generator, it is required to change project configuration
and to select « Legacy (<4.2) ». From this configuration

window, it is also possible to trigger the generation of

arithmetic overflow, well-definedness or Why32 proof
obligations.

Figure 1: files used by Atelier B and their relationships

Files used internally by Atelier B 4.2 have changed (see Figure 1), mostly all in xml formal. B models

are saved in bxml format, proof obligations are making use of poxml format to ensure differential

generation: only proof obligations related to modified parts of models are recomputed, non-modified

proof obligations (and their associated demonstrations are kept).

1 Within the framework of project Cercles-2 with the support of Agence Nationale pour la Recherche
2 Resulting file is named like the component from where it is used but with .why extension. It is

located in the bdp directory of the project.

http://www.algo-prog.info/cercles
http://www.agence-nationale-recherche.fr/

Traceability

Proof obligations (PO) are now linked with the models they are issued from. For each PO, in the

interactive prover, related models are displayed on the pane right to the initial proof obligation (see

Figure 2), one section per model part (invariant, variable, operation clauses for example).

Expressions contained in the proof obligations are linked with model code: when selecting

expressions in the initial proof obligation, corresponding expressions in the model are selected

(inverse video).

Figure 2: proof obligation with traceability information

PO can be filtered according to their type in the interactive prover

GUI, by using a dynamic contextual menu which contains only the

types of the POs of the current component.

Versatility

Theoretical proof obligations are POG parameters. They are located in Atelier B installation directory,

in the sub-directory press/include:

 paramGOPSoftware.xsl : proof obligations for B method

 paramGOPSystem.xsl : proof obligations for Event-B

 wellDefinedness.xsl : proof obligations for well-definedness

These proof obligations may be extended by modifying these files.

Figure 3: proof obligation of the well-definedness of constant properties of a machine

Otherwise in the directory, the file bxml.xsd, contains the definition of the grammar of bxml, new

file format for B models, enabling interoperability.

Simplicity

New normalisation principles have been defined and are listed in the three following tables.

Goal and hypothesis normalisation Normalised predicate (expression)
a /= b not(a = b)
a /: b not(a : b)
a <: b a : POW(b)
a <<: b a : POW(b) & not(a=b)

a /<: b not(a : POW(b))

a /<<: b a : POW(b) => a=b

a <= b (real) a rle b

a <= b (float) a <=. B

a >= b (int) b <= a

a >= b (real) b rle a

a >= b (float) b <=. a

a < b (int) a+1 <= b

a < b (real) a rle b & not(a=b)

a < b (float) a <=. b & not(a=b)

a > b (int) b+1 <= a

a > b (real) b rle a & not(b=a)

a > b (float) b <=. a & not(b=a)

a + b (real) a rplus b

a + b (float) a +. b

a - b (real) a rminus b

a - b (float) a -. b

a * b (real) a rmul b

a * b (float) a *. b

a / b (real) a rdiv b

a / b (float) a /. b

a ** b (real) a rpow b

-a (real) 0.0 rminus a

max(a) (real) rmax(a)

min(a) (real) rmin(a)

SIGMA(a).(b|c) (real) rSIGMA(a).(b|c)

PI(a).(b|c) (real) rPI(a).(b|c)

{a|b} SET(a).(b)

a <=> b (a => b) & (b => a)

bool(a) = TRUE A

NAT1 NAT-{0}

NATURAL1 NATURAL-{0}

[] {}

{a1,...,an} {a1}\/...\/{an}

FIN1(a) FIN(a)-{{}}

POW1(a) POW(a)-{{}}

Table 1: Predicate and expression normalisation in the goal and hypotheses (predicates and expressions are replaced by
their normalised form)

Valuation normalisation
(when POs are generated)

Normalised predicate

a(b) := c a := a <+ {b |-> c}
a'b := c a := a <<< {b$8888 = c}

Table 2: normalised valuation (predicates replaced by their normalised form)

Hypothesis normalisation
(new hypotheses added)

Normalised predicate

a : NATURAL a : INTEGER & 0 <= a
a : b --> c a : b +-> c & dom(a)=b
a : b >+> c a : b +-> c & a~ : c +-> b
a : b >-> c a : b +-> c & a~ : c +-> b &

a : b --> c & dom(a)=b

a : b +->> c a : b +-> c & ran(a) = b

a : b -->> c a : b +-> c & ran(a) = b &

a : b --> c & dom(a)=b &

a : b +->> c

a : b >+>> c a : b +-> c & ran(a) = b & a~ : c +-> b &

a : b >+> c & a : b +->> c

a : b >->> c a : b +-> c & ran(a) = b &

a~ : c +-> b & a : b --> c &

a : b >+> c & a : b +->> c

a : seq(b) a : NATURAL-{0} +-> b

a : seq1(b) a : seq(b) & a : NATURAL-{0} +-> b &

not(a={})

a : iseq(b) a : seq(b) & a : NATURAL-{0} +-> b &

a~ : b +-> NATURAL-{0}

a : iseq1(b) a : seq(b) & a : NATURAL-{0} +-> b &

a~ : b +-> NATURAL-{0} & a : iseq(b) &

a : seq1(b) & not(a={})

a : perm(b) a : seq(b) & a : NATURAL-{0} +-> b &

a~ : b +-> NATURAL-{0} & a : iseq(b) &

a : seq1(b) & not(a={}) & ran(a) = b

Table 3: normalised predicate in hypothesis (new hypotheses are created)

A new, internal, update operator has been added3 that allows for avoiding situations where record

modification could lead to memory exhaustion and large expressions difficult to manipulate. All

known bugs related to records are solved, including name captures between record labels and model

variables.

Figure 4: example of proof obligation issued from “record in a record” valuation – all labels have to be made explicit

This proof obligation generator has not yet been qualified for a safety critical software development.

Caution is required in case of a SIL3 or SIL4 software development.

3 Comparable to with (field update) of the why3 language)

Real and floating point numbers

Since release 4.1, real and floating point numbers are supported
(see Release Notes 4.1.0). Real numbers are of type REAL, floating point numbers are FLOAT. With

release 4.2, real and floating point numbers support has been improved and slightly modified.

Figure 5: Event-B model including real variables

There are several important points to mention:

 non integer numbers are only taken into account by the new proof obligation generator;

 Unlike release 4.1, arithmetic operators are unified among integer, real and floating

operators (see Table 4, Table 5 and Table 6);

 On the other side, during proof phase, operators are different because their semantic is
different. Hence languages in the models and in the prover differ (this apply also for
mathematical rules in the pmm files).

When proof obligations are generated, unified syntax is transformed into type-specific dedicated

syntax. Operand type is used to determine the operator to use. There is no conversion nor no implicit
coercion.

Unified Integer Real Float
x <= y x <= y x rle y x <=. y
x < y x < y x rlt y x <. y
x >= y x >= y x rge y x >=. y
x > y x > y x rgt y x >. y
x + y x + y x rplus y x +. Y
- x - x 0.0 rminus x -. X

x - y x - y x rminus y x <=. y

x * y x * y x rmul y x *. Y

x / y x / y x rdiv y x /. y

x ** y x ** y x rpow y Invalid

min(x) min(x) rmin(x) Invalid

max(x) max(x) rmax(x) Invalid

SIGMA(x).(y | z) SIGMA(x).(y | z) rSIGMA(x).(y | z) Invalid

PI(x).(y | z) PI(x).(y | z) rPI(x).(y | z) Invalid

Table 4: predicate conversion, from model (left column) to proof, based on their type

http://www.atelierb.eu/wp-content/uploads/AtelierB-4.1.0-release-notes.pdf

Well-definedness conditions are equivalent to integer operators ones.

Integer/real and real/integer conversion is performed by using operators in the next table.

Meaning
resulting type

Syntax Operand type

Embedding integers in reals

real(x) : REAL
real(x) x : INTEGER

Integer part

floor(x) : INTEGER
floor(x) x : REAL

Smallest following integer

ceiling(x) : INTEGER
ceiling(x) x : REAL

Table 5: integer/real and real/integer conversion operators

Floating point numbers are considered as implementable type and as such they do not have

specification operators like min, max, SIGMA and PI.

Floating point literals are not accepted: a basic machine has to be used instead.

There is no predefined operator for converting float into real and float into integer (and vice-versa).

Real and float partial order normalisation (used in the proof obligations) is summarized on the
following table.

Unified Integer Real Float
x < y x+1 <= y x rle y & x /= y x <=. y & x /= y

x >= y y <= x y rle x y <=. x

x > y y+1 < x y rle x & y /= x y <=. x & y /= x

Table 6: partial order normalisation for integers, reals and floats

BART

 Addition of accessors to solve variable implementation conflict

Classical refinement substitution rules (THEORY_OPERATION) may require the
implementation or export of variables. Export of variables means here that the
implementation of a variable is transferred to an imported machine. Resulting constraints on

how variables have to be implemented in a refinement column may lead to conflicts when
constraints are incompatible (a variable needs to be both implemented and exported),
preventing the refinement process to complete successfully.

A solution to avoid conflicts is to use a special type of substitution rule for each rule requiring
the implementation of a variable: accessor rules (THEORY_ACCESSOR). These rules are
elementary rules describing the refinement of a substitution requiring a variable to be
implemented.

In practice, this refinement is automatically imported in an “accessor” rule, which contributes
to avoid conflicts when allocating operations in the refinement column. In short, the theory
THEORY_OPERATION should not contain any rule requiring the implementation of a variable;

similarly the theory THEORY_ACCESSOR should only contain rules implementing variables in
order to read or modify them. In the operation rules, transformations of variables should be
performed using abstract substitutions (the ones that are refined by accessor rules). Please
refer to BART User Manual for more details about accessor rules.

 Components generated automatically appear differently in the project status: their names
are in italic.

 BART generated models are not any more systematically suppressed then re-added to the
project: only new components are added and suppressed components are removed. This way
proof status, demonstrations and proof rules are not lost. For unchanged models, typecheck
status and proof obligations are kept.

Figure 6: syntax of an accessor rule

Fine-tuning Boolean and integer type translation for C4B

Since release 4.1, C4B C code generator has superseded ComenC (see Release Notes 4.1.0).

A new code generation mode has been
added: “01”. It allows to generate C code
complying with the C9X profile with
constants and variables names not prefixed
with the component name.

Translations produced are summarized in
the following table.

B model
(machine M3)

Profile C9X Profile light Profile 01

I1 : INT static int32_t M3__i1; static long M3__i1; static int32_t i1;

B1 : BOOL static bool M3__b1; static unsigned char M3__b1; static bool b1;

http://www.atelierb.eu/wp-content/uploads/AtelierB-4.1.0-release-notes.pdf

Proof server

Since release 4.1, parallel execution of proof tasks has been introduced (see Release Notes 4.1.0).
This ability is extended with Atelier B 4.2 with the use of:

 Several cores of the local machine,
 A remote proof server (Linux only).

Parallel task execution is
determined by the number
by a maximum number of
running tasks, strictly
greater than 1 (see
parameter “maximum

running tasks”). The number of tasks really executed in parallel is always greater or equal to the
number of cores available locally. If this parameter is 0, then no core of the local machine is used
and all proof effort is transferred to remote proof server, if any.

The list of available cores is displayed in the window « servers », starting
with the cores of the local machine. Cores are named « local::<IP address>-
<core index> » where <IP address> is equal to the IP address of the
machine executing the task on its core # <core index>. IP address of the
local machine is localhost.

To trigger parallel execution of task, one component of an open project has to be selected. The tasks

number value has to be set up (see Figure 7). Selecting proof action (F0, F1, etc.) initiates a number

of parallel tasks corresponding to that value.

Figure 7: tasks number value (here 4)

To connect to a proof server

and have more computation

power available, Atelier B

configuration has to be

modified first to enable the

search for proof servers. For

this, “search a BBatch

Dispatcher” has to be

selected in the “installation”

preferences page. Then

Atelier B has to be restarted.

If at least one proof server is available

on the local network, a window would

show up, inviting to connect to this

server (indication: IP address, number

of cores).

In case of positive answer, the list of cores available in the “servers” window will be

extended. Local machine cores are always listed before remote cores. When

executing tasks in parallel, the search of an available core is always performed

according to this order.

http://www.atelierb.eu/wp-content/uploads/AtelierB-4.1.0-release-notes.pdf

A proof server is in fact a “proof concentrator”: it links Atelier B clients with mono-core or multi-

cores machines performing proof tasks. There is no constraint on the localization of a proof sever

that can execute on any Linux computer.

Figure 8: Proof infrastructure – Atelier B has to be installed on all these machines

It is mandatory to execute (see Figure 8):

 a processus BBatchDispatcher on the proof server,
 a processus BBatchServer on each machine having cores(s) available for the proof tasks.

These executable files are located in the Atelier B install directory.

To execute a BBatchDispatcher, type the following command:

./bbatchdispatcher <hostname> <hostaddress>

where <hostname> is the name of the computer and <hostaddress> its IP address.

A web server is started and reachable at the address http://localhost:<port>/servers.html (the port

number, <port>, is returned when launching the BBatchDispatcher). It provides an information and

command interface (see Figure 9) which lists associated BBatchServers and their number of cores.

Figure 9: BBatchDispatcher web server indicating BBatchServers status

With this interface, cores can be allocated to proof (action « reserve ») or released (action

« release »)4.

4 Cores use is only limited within BBatchServer. This feature doesn’t prevent the execution of third party
processes on these cores.

http://localhost:%3cport%3e/servers.html

To execute a BBatchServer, type the following command:

./bbatchserver <hostaddress> <cores> -d <dispatcheraddress>

where <hostaddress> is the IP address of the computer, <cores> the number of available cores

and <dispatcheraddress> the IP address of the proof server executing BBatchDispatcher.

Diverse improvements

The main new features of Atelier B 4.2 are listed below by category:

Prover :

 When proving interactively, a proof history is stored,

enabling to navigate through proof obligations

previously demonstrated manually. This history is local

to the computer executing the interactive prover.

 The pmm editor offers to validate a rule in the outline view, with

a context menu. Select a rule on the outline and right click on it.

 When a proof obligation is demonstrated and saved, the

demonstration is saved in the “User Pass”. The formatting

separates the name of the operation on the first line, the

pattern of the proof obligation on the second line and the

list of commands starting on the third line.

 The TryEverywhere command, allowing to try successful

demonstrations on other proof obligations, has a new mode of

execution: with a context menu (“try everywhere matching

goal”), a demonstration can be tried on all unproved proof

obligations of a component that have exactly same goal.

 Interactive prover logic formula

analyser supports new real and

float operators.

 When triggering the interactive prover “reset” button (return to the proof tree root of the

current proof obligation), a confirmation is required in order to avoid losing the ongoing

demonstration.

 Rules EqualityXY.148 and EqualityXY.149 were not generic enough. Their typing guards

(binhyp) have been deleted.

Project management:
 Project creation has been simplified since now only one directory is required (the root

directory of the project). If this directory contains lang and bdp directories (or equivalent

specified in the preferences)

that are selected as « project

database » and « translation

directory», then these

directories are associated to

the project. If these

directories do not exist, they

are created.

 To improve project management, it is now possible to associate to

a Manifest file to a project. Manifest file is an xml file containing

the list of files to add to the project with their relative path (see

Figure 10). To create this file, an open project has to be selected

then the « Synchronize with Manifest » context menu action has to

be triggered. A directory and a filename have to be chosen for this

Manifest file. Warning! It should not be saved in the bdp directory

which already contains a MANIFEST file used for archiving projects.

To create a project from a Manifest file, it is required to select

« Create from a Manifest » during its creation.

Figure 10: example of MANIFEST file

Rules proof tool (Atelier B Maintenance Edition):
 Rules containing dangerous list patterns ([a] or {a}) are more easily identifiable:

o User can trigger an action which find rules containing [a] or {a} patterns (whatever

the wildcard) and which change proof rule statuses to “Invalid”.

o The Html report displays a warning for each rule containing [a] or {a} pattern

o The GUI displays a warning when a rule contains [a] or {a} pattern

 Rule selection is performed with a single-click, instead of a double-click

 The timestamp used to tag a verified rule in a pmm file now complies with UTC date ISO

format.

 A rule can be de-verified.

 When a rule is verified, its status is displayed (« verified OK » or « verified NOK »). Status

is displayed in the navigator (files, theories and rules list) and in the visualisation area of the

current rule.

 In the navigator, colours have been replaced by icons in order to quickly identify verified,

partly verified or non-verified elements.

 Tooltips make precise what the various numbers in the navigator mean.

 Current mode name (specification, design) is displayed in the window title.

Ergonomics:

 The context menu associated to an operation

now shows up two new actions: « Find all

uses » and « Called operations ». The former

lists all implementations calling this

operation. The latter lists all operations that

are called in the implementation of this

operation. These lists are displayed in the

window « File search results ».

 Long error messages are now displayed on several lines.

 In the component view (graphic view), tasks can

be rescheduled, interrupted or removed (actions

available on context menu). When a task is

rescheduled, all the tasks of the component are

rescheduled accordingly.

 B Compiler error messages are more understandable: when displaying type errors, types are

now displayed in accordance with B models and not using B Compiler internal type (more

precise but less clear).

 A context menu of the model editor allows to close all tabs or only the current one.

 Action “Open folder” in the project menu allows to open the project root directory in the

system file explorer.

 The content of the « outline » view is generated on the background and doesn’t delay the

opening of the editor.

 In the component menu, a sub-

menu, “tasks”, has been added,

enabling the interruption or deletion

of a tasks of a component. The last

action (« delete all tasks (except running ») deletes waiting tasks, error tasks and completed

tasks from the tasks list.

 Elements in the « outline » view can be filtered, that is

useful if the component contains a large number of

elements. The filter can be set up to only display errors.

 B0Check verifications are not displayed by default, as these verifications are sometimes not

related to code generator used (some verifications are related to Atelier B Maintenance

Edition code generators).

 Accents and spaces in filenames and path are better supported.

